RESUMEN
We report on a Laser Induced Breakdown Spectroscopy (LIBS) system with a very high temporal resolution, using femtosecond and picosecond pulse laser excitation of pure aluminum (Al). By using a 140 fs Ti:Sapphire laser in an ultrafast optical Kerr gate (OKG), we demonstrate LIBS sampling with a sub-ps time resolution (0.8 ± 0.08 ps) in a 14 ns window. The width of the gating window in this system was as narrow as 0.8 ps, owing to the inclusion of a carbon disulfide (CS(2)) cell, which has a fast response and a large nonlinear coefficient. Furthermore, when using a 100 ps pulsed Nd:YAG laser and a fast photomultiplier tube (PMT) we demonstrate a LIBS system with a nanosecond time resolution (2.20 ± 0.08 ns) in a microsecond window. With this sort of temporal resolution, a non-continuous decay in the Al signal could be observed. After 50 ns decay of the first peak, the second peak at 230 ns is started to perform. Experimental results with such short temporal windows in LIBS, in both nanosecond and microsecond ranges, are important for fast temporal evolution measurements and observations of early continuum emission in materials.
RESUMEN
Using the Z-scan technique, we find that migration of chloroaluminum phthalocyanine in liquid ethanol can be induced by the absorption of a 19 ps laser pulse with energy exceeding a threshold but not by that of a 2.8 ns pulse depositing more energy at the solute molecules. Considering each solute molecule as an oscillator confined within a potential well, we explain, in accordance with the five-energy-band model, that solute molecules excited by a 19 ps pulse retain more translational excess energy to overcome the potential well barrier compared with those excited by a 2.8 ns pulse of equal energy. Therefore, they are more likely to migrate out of the laser beam center, weakening the solution's absorption that we detect in the Z-scan measurements. Furthermore, we theoretically infer that the 19 ps pulse-induced solute migration tends to be nonquasistatic and experimentally verify that it cannot be attributed to the Soret effect, a quasistatic process.
RESUMEN
We present nonlinear refraction results for liquids methanol and acetic acid obtained with the Z-scan technique and 28 femtosecond (fs) 800 nm laser pulses. In contrast to the positive lensing effect obtained previously with picosecond and nanosecond laser pulses, a negative lensing effect is observed. The associated mechanism features the third-order polarization arising from the nonlinear response of the molecular skeletal motion that is driven into resonance through its electrostatic coupling to the valence electron cloud distorted by the fs laser field.
RESUMEN
Transition from reverse-saturable absorption to saturable absorption of the chloroaluminum phthalocyanine solution excited by a giant laser pulse is ascribed not just to the saturation of excited state absorption, but also to the outward migration of the solute molecules at the laser beam center. While the saturation of excited state absorption occurs within a single picosecond laser pulse, the beam center population decrease is sustained much longer than the pulse duration. We distinguish these two mechanisms with the Z-scan technique, utilizing picosecond pulses with pulse-to-pulse separations ranging from 0.1 to 5.0 s.