Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell Commun Signal ; 22(1): 220, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589923

RESUMEN

Endosomal single-stranded RNA-sensing Toll-like receptor-7/8 (TLR7/8) plays a pivotal role in inflammation and immune responses and autoimmune diseases. However, the mechanisms underlying the initiation of the TLR7/8-mediated autoimmune signaling remain to be fully elucidated. Here, we demonstrate that miR-574-5p is aberrantly upregulated in tissues of lupus prone mice and in the plasma of lupus patients, with its expression levels correlating with the disease activity. miR-574-5p binds to and activates human hTLR8 or its murine ortholog mTlr7 to elicit a series of MyD88-dependent immune and inflammatory responses. These responses include the overproduction of cytokines and interferons, the activation of STAT1 signaling and B lymphocytes, and the production of autoantigens. In a transgenic mouse model, the induction of miR-574-5p overexpression is associated with increased secretion of antinuclear and anti-dsDNA antibodies, increased IgG and C3 deposit in the kidney, elevated expression of inflammatory genes in the spleen. In lupus-prone mice, lentivirus-mediated silencing of miR-574-5p significantly ameliorates major symptoms associated with lupus and lupus nephritis. Collectively, these results suggest that the miR-574-5p-hTLR8/mTlr7 signaling is an important axis of immune and inflammatory responses, contributing significantly to the development of lupus and lupus nephritis.


Asunto(s)
Nefritis Lúpica , MicroARNs , Humanos , Ratones , Animales , Nefritis Lúpica/genética , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 8/genética , Receptor Toll-Like 8/metabolismo , Riñón/metabolismo , Ratones Transgénicos , MicroARNs/genética
2.
Mol Med Rep ; 9(2): 387-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24284654

RESUMEN

ArfGAP with SH3 domain, ankyrin repeat and PH domain 3 (ASAP3), previously known as ACAP4, DDEFL1 and UPLC1, is considered to be an important regulator in cancer cell migration/invasion and actin-based cytoskeletal remodeling. However, the underlying mechanisms through which ASAP3 mediates these processes are not well-elucidated. This study reported that in certain types of cancer cells, loss of ASAP3 suppressed cell migration/invasion, in part by destabilizing γ-actin-1 (ACTG1), a cytoskeletal protein considered to be an integral component of the cell migratory machinery, essential for the rearrangement of the dynamic cytoskeletal networks and important in diseases, such as brain malformation, hearing loss and cancer development. The data, for the first time, link ASAP3 with ACTG1 in the regulation of cytoskeletal maintenance and cell motility.


Asunto(s)
Actinas/genética , Movimiento Celular/genética , Proteínas Activadoras de GTPasa/genética , Neoplasias/genética , Proteínas del Citoesqueleto/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Células Hep G2 , Humanos , Neoplasias/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA