Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Cell ; 69(3): 517-532.e11, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29395067

RESUMEN

mRNA processing, transport, translation, and ultimately degradation involve a series of dedicated protein complexes that often assemble into large membraneless structures such as stress granules (SGs) and processing bodies (PBs). Here, systematic in vivo proximity-dependent biotinylation (BioID) analysis of 119 human proteins associated with different aspects of mRNA biology uncovers 7424 unique proximity interactions with 1,792 proteins. Classical bait-prey analysis reveals connections of hundreds of proteins to distinct mRNA-associated processes or complexes, including the splicing and transcriptional elongation machineries (protein phosphatase 4) and the CCR4-NOT deadenylase complex (CEP85, RNF219, and KIAA0355). Analysis of correlated patterns between endogenous preys uncovers the spatial organization of RNA regulatory structures and enables the definition of 144 core components of SGs and PBs. We report preexisting contacts between most core SG proteins under normal growth conditions and demonstrate that several core SG proteins (UBAP2L, CSDE1, and PRRC2C) are critical for the formation of microscopically visible SGs.


Asunto(s)
Citoplasma/ultraestructura , Gránulos Citoplasmáticos/metabolismo , ARN Mensajero/metabolismo , Proteínas Portadoras/metabolismo , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Humanos , Espacio Intracelular , Proteínas/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico
2.
Mol Cell ; 56(1): 90-103, 2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25219497

RESUMEN

The vertebrate and neural-specific Ser/Arg (SR)-related protein nSR100/SRRM4 regulates an extensive program of alternative splicing with critical roles in nervous system development. However, the mechanism by which nSR100 controls its target exons is poorly understood. We demonstrate that nSR100-dependent neural exons are associated with a unique configuration of intronic cis-elements that promote rapid switch-like regulation during neurogenesis. A key feature of this configuration is the insertion of specialized intronic enhancers between polypyrimidine tracts and acceptor sites that bind nSR100 to potently activate exon inclusion in neural cells while weakening 3' splice site recognition and contributing to exon skipping in nonneural cells. nSR100 further operates by forming multiple interactions with early spliceosome components bound proximal to 3' splice sites. These multifaceted interactions achieve dominance over neural exon silencing mediated by the splicing regulator PTBP1. The results thus illuminate a widespread mechanism by which a critical neural exon network is activated during neurogenesis.


Asunto(s)
Empalme Alternativo , Exones , Modelos Genéticos , Neurogénesis/genética , Animales , Diferenciación Celular , Línea Celular , Regulación de la Expresión Génica , Células HEK293 , Humanos , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/fisiología , Motivos de Nucleótidos
3.
Nat Methods ; 10(7): 641-6, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23749303

RESUMEN

We developed an integrated chip for real-time amplification and detection of nucleic acid using pH-sensing complementary metal-oxide semiconductor (CMOS) technology. Here we show an amplification-coupled detection method for directly measuring released hydrogen ions during nucleotide incorporation rather than relying on indirect measurements such as fluorescent dyes. This is a label-free, non-optical, real-time method for detecting and quantifying target sequences by monitoring pH signatures of native amplification chemistries. The chip has ion-sensitive field effect transistor (ISFET) sensors, temperature sensors, resistive heating, signal processing and control circuitry all integrated to create a full system-on-chip platform. We evaluated the platform using two amplification strategies: PCR and isothermal amplification. Using this platform, we genotyped and discriminated unique single-nucleotide polymorphism (SNP) variants of the cytochrome P450 family from crude human saliva. We anticipate this semiconductor technology will enable the creation of devices for cost-effective, portable and scalable real-time nucleic acid analysis.


Asunto(s)
Concentración de Iones de Hidrógeno , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Semiconductores , Análisis de Secuencia de ADN/instrumentación , Procesamiento de Señales Asistido por Computador/instrumentación , Diseño de Equipo , Integración de Sistemas
4.
Mol Cell Proteomics ; 9(5): 811-23, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20305087

RESUMEN

Protein complexes and protein-protein interactions are essential for almost all cellular processes. Here, we establish a mammalian affinity purification and lentiviral expression (MAPLE) system for characterizing the subunit compositions of protein complexes. The system is flexible (i.e. multiple N- and C-terminal tags and multiple promoters), is compatible with Gateway cloning, and incorporates a reference peptide. Its major advantage is that it permits efficient and stable delivery of affinity-tagged open reading frames into most mammalian cell types. We benchmarked MAPLE with a number of human protein complexes involved in transcription, including the RNA polymerase II-associated factor, negative elongation factor, positive transcription elongation factor b, SWI/SNF, and mixed lineage leukemia complexes. In addition, MAPLE was used to identify an interaction between the reprogramming factor Klf4 and the Swi/Snf chromatin remodeling complex in mouse embryonic stem cells. We show that the SWI/SNF catalytic subunit Smarca2/Brm is up-regulated during the process of induced pluripotency and demonstrate a role for the catalytic subunits of the SWI/SNF complex during somatic cell reprogramming. Our data suggest that the transcription factor Klf4 facilitates chromatin remodeling during reprogramming.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Lentivirus/metabolismo , Células Madre Pluripotentes/metabolismo , Proteómica/métodos , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Reprogramación Celular/genética , Cromatografía de Afinidad , Humanos , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Datos de Secuencia Molecular , Complejos Multiproteicos/metabolismo , Células Madre Pluripotentes/citología , Unión Proteica , Transcripción Genética
5.
Mol Cell Proteomics ; 8(1): 157-71, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18782753

RESUMEN

The serine/threonine protein phosphatases are targeted to specific subcellular locations and substrates in part via interactions with a wide variety of regulatory proteins. Understanding these interactions is thus critical to understanding phosphatase function. Using an iterative affinity purification/mass spectrometry approach, we generated a high density interaction map surrounding the protein phosphatase 2A catalytic subunit. This approach recapitulated the assembly of the PP2A catalytic subunit into many different trimeric complexes but also revealed several new protein-protein interactions. Here we define a novel large multiprotein assembly, referred to as the striatin-interacting phosphatase and kinase (STRIPAK) complex. STRIPAK contains the PP2A catalytic (PP2Ac) and scaffolding (PP2A A) subunits, the striatins (PP2A regulatory B''' subunits), the striatin-associated protein Mob3, the novel proteins STRIP1 and STRIP2 (formerly FAM40A and FAM40B), the cerebral cavernous malformation 3 (CCM3) protein, and members of the germinal center kinase III family of Ste20 kinases. Although the function of the CCM3 protein is unknown, the CCM3 gene is mutated in familial cerebral cavernous malformations, a condition associated with seizures and strokes. Our proteomics survey indicates that a large portion of the CCM3 protein resides within the STRIPAK complex, opening the way for further studies of CCM3 biology. The STRIPAK assembly establishes mutually exclusive interactions with either the CTTNBP2 proteins (which interact with the cytoskeletal protein cortactin) or a second subcomplex consisting of the sarcolemmal membrane-associated protein (SLMAP) and the related coiled-coil proteins suppressor of IKKepsilon (SIKE) and FGFR1OP2. We have thus identified several novel PP2A-containing protein complexes, including a large assembly linking kinases and phosphatases to a gene mutated in human disease.


Asunto(s)
Proteínas de Unión a Calmodulina/metabolismo , Proteínas Portadoras/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fosfotransferasas/metabolismo , Proteína Fosfatasa 2/metabolismo , Proteínas del Citoesqueleto , Células HeLa , Humanos , Proteínas de Unión a Fosfato , Unión Proteica
6.
EMBO Rep ; 9(10): 1019-26, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18758438

RESUMEN

Phosphorylation of histone H2AX on Ser 139 (gammaH2AX) is one of the earliest events in the response to DNA double-strand breaks; however, the subsequent removal of gammaH2AX from chromatin is less understood, despite being a process tightly coordinated with DNA repair. Previous studies in yeast have identified the Pph3 phosphatase (the PP4C orthologue) as important for the dephosphorylation of gammaH2AX. By contrast, work in human cells attributed this activity to PP2A. Here, we report that PP4 contributes to the dephosphorylation of gammaH2AX, both at the sites of DNA damage and in undamaged chromatin in human cells, independently of a role in DNA repair. Furthermore, depletion of PP4C results in a prolonged checkpoint arrest, most likely owing to the persistence of mediator of DNA damage checkpoint 1 (MDC1) at the sites of DNA lesions. Taken together, these results indicate that PP4 is an evolutionarily conserved gammaH2AX phosphatase.


Asunto(s)
Daño del ADN/fisiología , Reparación del ADN/fisiología , Histonas/metabolismo , Fosfoproteínas Fosfatasas/fisiología , Línea Celular Tumoral , Cromatina/metabolismo , Secuencia Conservada , Evolución Molecular , Fase G2/genética , Histonas/clasificación , Humanos , Mitosis/genética , Fosfoproteínas Fosfatasas/aislamiento & purificación , Fosforilación/fisiología , Factores de Tiempo
7.
Cell Rep ; 2(4): 951-63, 2012 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-23084749

RESUMEN

The pentaspan membrane glycoprotein CD133 marks lineage-specific cancer progenitor cells and is associated with poor prognosis in a number of tumor types. Despite its utility as a cancer progenitor cell marker, CD133 protein regulation and molecular function remain poorly understood. We find that the deacetylase HDAC6 physically associates with CD133 to negatively regulate CD133 trafficking down the endosomal-lysosomal pathway for degradation. We further demonstrate that CD133, HDAC6, and the central molecule of the canonical Wnt signaling pathway, ß-catenin, can physically associate as a ternary complex. This association stabilizes ß-catenin via HDAC6 deacetylase activity, which leads to activation of ß-catenin signaling targets. Downregulation of either CD133 or HDAC6 results in increased ß-catenin acetylation and degradation, which correlates with decreased proliferation in vitro and tumor xenograft growth in vivo. Given that CD133 marks progenitor cells in a wide range of cancers, targeting CD133 may be a means to treat multiple cancer types.


Asunto(s)
Antígenos CD/metabolismo , Glicoproteínas/metabolismo , Histona Desacetilasas/metabolismo , Péptidos/metabolismo , beta Catenina/metabolismo , Antígeno AC133 , Acetilación , Animales , Antígenos CD/genética , Células CACO-2 , Diferenciación Celular , Línea Celular Tumoral , Regulación hacia Abajo , Endosomas/metabolismo , Transición Epitelial-Mesenquimal , Femenino , Glicoproteínas/antagonistas & inhibidores , Glicoproteínas/genética , Células HEK293 , Células HT29 , Histona Desacetilasa 6 , Histona Desacetilasas/química , Histona Desacetilasas/genética , Humanos , Ratones , Ratones Endogámicos NOD , Neoplasias/metabolismo , Neoplasias/patología , Péptidos/antagonistas & inhibidores , Péptidos/genética , Unión Proteica , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Trasplante Heterólogo , Proteínas Wnt/metabolismo
8.
Science ; 326(5959): 1502-9, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20007894

RESUMEN

Cells have self-organizing properties that control their behavior in complex tissues. Contact between cells expressing either B-type Eph receptors or their transmembrane ephrin ligands initiates bidirectional signals that regulate cell positioning. However, simultaneously investigating how information is processed in two interacting cell types remains a challenge. We implemented a proteomic strategy to systematically determine cell-specific signaling networks underlying EphB2- and ephrin-B1-controlled cell sorting. Quantitative mass spectrometric analysis of mixed populations of EphB2- and ephrin-B1-expressing cells that were labeled with different isotopes revealed cell-specific tyrosine phosphorylation events. Functional associations between these phosphotyrosine signaling networks and cell sorting were established with small interfering RNA screening. Data-driven network modeling revealed that signaling between mixed EphB2- and ephrin-B1-expressing cells is asymmetric and that the distinct cell types use different tyrosine kinases and targets to process signals induced by cell-cell contact. We provide systems- and cell-specific network models of contact-initiated signaling between two distinct cell types.


Asunto(s)
Efrina-B1/metabolismo , Receptor EphB2/metabolismo , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Algoritmos , Línea Celular , Efrina-B1/genética , Humanos , Ligandos , Espectrometría de Masas , Modelos Biológicos , Dominios PDZ , Fosforilación , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Tirosina Quinasas/metabolismo , Proteómica , ARN Interferente Pequeño , Receptor EphB2/genética , Tirosina/metabolismo , Dominios Homologos src
9.
J Biol Chem ; 283(43): 29273-84, 2008 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-18715871

RESUMEN

Protein serine/threonine phosphatase 4 (PP4c) is an essential polypeptide involved in critical cellular processes such as microtubule growth and organization, DNA damage checkpoint recovery, apoptosis, and tumor necrosis factor alpha signaling. Like other phosphatases of the PP2A family, PP4c interacts with regulatory proteins, which specify substrate targeting and intracellular localization. The identification of these regulatory proteins is, therefore, key to fully understanding the function of this enzyme class. Here, using a sensitive affinity purification/mass spectrometry approach, we identify a novel, stable cytosolic PP4c interacting partner, KIAA1622, which we have renamed PP4R4. PP4R4 displays weak sequence homology with the A (scaffolding) subunit of the PP2A holoenzyme and specifically associates with PP4c (and not with the related PP2Ac or PP6c phosphatases). The PP4c.PP4R4 interaction is disrupted by mutations analogous to those abrogating the association of PP2Ac with PP2A A subunit. However, unlike the PP2A A subunit, which plays a scaffolding role, PP4R4 does not bridge PP4c with previously characterized PP4 regulatory subunits. PP4c.PP4R4 complexes exhibit phosphatase activity toward a fluorogenic substrate and gammaH2AX, but this activity is lower than that associated with the PP4c.PP4R2.PP4R3 complex, which itself is less active than the free PP4c catalytic subunit. Our data demonstrate that PP4R4 forms a novel cytosolic complex with PP4c, independent from the complexes containing PP4R1, PP4R2.PP4R3, and alpha4, and that the regulatory subunits of PP4c have evolved different modes of interaction with the catalytic subunit.


Asunto(s)
Proteínas Portadoras/química , Citosol/metabolismo , Fosfoproteínas Fosfatasas/química , Animales , Apoptosis , Encéfalo/metabolismo , Chlorocebus aethiops , Citoplasma/metabolismo , Ácidos Grasos Insaturados/farmacología , Humanos , Ratones , Modelos Biológicos , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Células Vero
10.
Methods ; 42(3): 298-305, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17532517

RESUMEN

Association of serine/threonine phosphatases with regulatory proteins is a key component of their specificity, and the identification of these binding partners is critical to understanding phosphatases function and regulation. Affinity-purification/mass spectrometry (AP-MS) approaches have been and continue to be instrumental in identifying these interactors. Here, we review the general principles of AP-MS, and present two affinity-purification protocols compatible with subsequent mass spectrometry, namely FLAG purification, and the tandem affinity purification (TAP). We have successfully used these protocols for the identification of binding partners for PP2A, PP4 and PP6, and they should be amenable to the analysis of interactors for other phosphatases.


Asunto(s)
Cromatografía de Afinidad/métodos , Espectrometría de Masas/métodos , Fosfoproteínas Fosfatasas/aislamiento & purificación , Células Cultivadas , Humanos , Oligopéptidos , Péptidos/química , Proteínas Recombinantes de Fusión/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA