Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Biomacromolecules ; 25(3): 2065-2074, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38386431

RESUMEN

Protein-incorporated soft networks have received remarkable attention during the past several years. They possess desirable properties similar to native tissues and organs and exhibit unique advantages in applications. However, fabrication of protein-based hydrogels usually suffers from complex protein mutation and modification or chemical synthesis, which limited the scale and yield of production. Meanwhile, the lack of rationally designed noncovalent interactions in networks may result in a deficiency of the dynamic features of materials. Therefore, a highly efficient method is needed to include supramolecular interactions into protein hydrogel to generate a highly dynamic hydrogel possessing integrated tissue-like properties. Here, we report the design and construction of native protein-based supramolecular synthetic protein hydrogels through a simple and efficient one-pot polymerization of acrylamide and ligand monomers in the presence of a ligand-binding protein. The supramolecular interactions in the network yield integrated dynamic properties, including remarkable stretchability over 10,000% of their original length, ultrafast self-healing abilities within 3-4 s, tissue-like fast stress relaxation, satisfactory ability of adhesion to different living and nonliving substrates, injectability, and high biocompatibility. Furthermore, this material demonstrated potential as a biosensor to monitor small finger movements. This strategy provides a new avenue for fabricating synthetic protein hydrogels with integrated features.


Asunto(s)
Hidrogeles , Proteínas , Hidrogeles/química , Ligandos , Polimerizacion , Acrilamida
2.
Chem Rev ; 121(18): 10950-11029, 2021 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-34338501

RESUMEN

Carbohydrates are the most abundant and one of the most important biomacromolecules in Nature. Except for energy-related compounds, carbohydrates can be roughly divided into two categories: Carbohydrates as matter and carbohydrates as information. As matter, carbohydrates are abundantly present in the extracellular matrix of animals and cell walls of various plants, bacteria, fungi, etc., serving as scaffolds. Some commonly found polysaccharides are featured as biocompatible materials with controllable rigidity and functionality, forming polymeric biomaterials which are widely used in drug delivery, tissue engineering, etc. As information, carbohydrates are usually referred to the glycans from glycoproteins, glycolipids, and proteoglycans, which bind to proteins or other carbohydrates, thereby meditating the cell-cell and cell-matrix interactions. These glycans could be simplified as synthetic glycopolymers, glycolipids, and glycoproteins, which could be afforded through polymerization, multistep synthesis, or a semisynthetic strategy. The information role of carbohydrates can be demonstrated not only as targeting reagents but also as immune antigens and adjuvants. The latter are also included in this review as they are always in a macromolecular formulation. In this review, we intend to provide a relatively comprehensive summary of carbohydrate-based macromolecular biomaterials since 2010 while emphasizing the fundamental understanding to guide the rational design of biomaterials. Carbohydrate-based macromolecules on the basis of their resources and chemical structures will be discussed, including naturally occurring polysaccharides, naturally derived synthetic polysaccharides, glycopolymers/glycodendrimers, supramolecular glycopolymers, and synthetic glycolipids/glycoproteins. Multiscale structure-function relationships in several major application areas, including delivery systems, tissue engineering, and immunology, will be detailed. We hope this review will provide valuable information for the development of carbohydrate-based macromolecular biomaterials and build a bridge between the carbohydrates as matter and the carbohydrates as information to promote new biomaterial design in the near future.


Asunto(s)
Materiales Biocompatibles , Carbohidratos , Animales , Materiales Biocompatibles/química , Carbohidratos/química , Glicoproteínas/química , Polimerizacion , Polisacáridos/química
3.
Macromol Rapid Commun ; 44(23): e2300359, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37496374

RESUMEN

Although advances have been made in carbohydrate-based macromolecular self-assembly, harnessing epimers of carbohydrates to perform molecular assembly and further investigating the properties of supramolecular materials remain little explored. Herein, two classes of stereoisomeric glycolipid amphiphiles based on d-N-acetylgalactosamine (GalNAc) are reported, and they can aggregate into ribbon-like structures in the aqueous solution due to amphiphilic property, which allow to obtain glycocalyx-mimicking supramolecular materials. The subtle distinction in glycoside configuration of GalNAc-α-SSA and GalNAc-ß-SSA dictates the different molecular packing in self-assembled structures. Since driven by the distinguishing carbohydrate-carbohydrate interactions, the ribbon-like architectures transform into spherical nanostructures via mixing GalNAc-α-SSA and GalNAc-ß-SSA. The resulting spherical micelles fabricated by blending glycolipid epimers can potentiate the macrophage- and dendritic cell-mediated immune responses in vitro. Such glycolipid epimers will pave the way to create glycocalyx-mimicking immune modulators by incorporating stereochemistry into supramolecular self-assembly.


Asunto(s)
Glucolípidos , Nanoestructuras , Nanoestructuras/química , Sustancias Macromoleculares/química , Carbohidratos/química , Micelas
4.
J Am Chem Soc ; 144(36): 16232-16251, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36044681

RESUMEN

The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.


Asunto(s)
Materiales Biocompatibles , Proteínas , Carbohidratos
5.
Small ; 18(30): e2201971, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35689511

RESUMEN

Improving the precise accumulation and retention of nanomedicines in tumor cells is one of the keys to effective therapy of tumors. Herein, supramolecular peptides capped Au nanocages (AuNCs) that may self-aggregate into micron-sized clusters intracellularly in response to spermine (SPM), leading to specific accumulation and retention of AuNCs in SPM-overexpressed tumor cells, are developed. In this design, polydopamine (PDA) is in situ coated on the surface of AuNCs with doxorubicin (DOX) encapsulated. A small peptide, Phe-Phe-Val-Leu-Lys (FFVLK), is conjugated with PDA via esterification, and cucurbit[7]uril (CB[7]) is threaded onto the N-terminal Phe via host-guest interactions. Once the supramolecular peptide (CB[7]-FFVLK) capped AuNCs are internalized in SPM-overexpressed breast cancer cells, CB[7] can be competitively removed from FFVLK by SPM, due to the much higher binding affinity between CB[7] and SPM than that between CB[7] and Phe, leading to exposure of free FFVLK, which can subsequently self-assemble and induce the aggregation of AuNCs to micron-sized clusters, resulting in the significantly enhanced accumulation and retention of DOX-loaded AuNCs in tumor cells. Under NIR laser irradiation, the enhanced photothermal conversion of AuNCs aggregates, together with photothermia-induced release of DOX leads to synergistic photothermal therapy and chemotherapy against breast cancer.


Asunto(s)
Neoplasias de la Mama , Oro , Neoplasias de la Mama/tratamiento farmacológico , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Femenino , Oro/química , Humanos , Fototerapia/métodos , Terapia Fototérmica , Espermina
6.
J Transl Med ; 20(1): 106, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35241106

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the lethal cancers with a high mortality rate worldwide and understanding the mechanisms behind its progression is critical for improving patients' prognosis and developing therapeutics. MiR-500a-3p has been demonstrated to be involved in the progression of several human cancers but its role in CRC remains unclear. The aim of this study is to uncover the expression pattern and mechanisms of action of miR-500a-3p during the CRC progression. METHODS: The expression of miR-500a-3p and Cyclin-dependent kinases 6 (CDK6) in 134 CRC tissues were tested by quantitative PCR (qPCR) and immunohistochemistry staining (IHC), respectively. The effect of miR-500a-3p on cell proliferation was explored in vitro and in vivo. The glycolysis of CRC cells was determined by Mass Spectrometry and Seahorse XF 96 Extracellular Flux Analyzer. A dual-luciferase reporter assay was performed to validate the relationship between miR-500a-3p and CDK6. RESULTS: miR-500a-3p was abnormally downregulated in CRC tissues and cell lines and was negatively associated with a worse prognosis. miR-500a-3p mimics impeded CRC cell proliferation in vitro and in vivo. miR-500a-3p inhibited glucose consumption, lactate and ATP production, and down-regulated the expression of hexokinase2 (HK2). In silico prediction combined with western blot and luciferase assay confirmed that CDK6 is a direct target of miR-500a-3p. Overexpression of CDK6 phenotypically rescued the inhibitory effect of miR-500a-3p on the proliferation and glycolysis of CRC cells. CONCLUSIONS: Our study revealed a potential tumor-suppressive role of miR-500a-3p in CRC, specifically targeting CDK6 and inhibiting cancer cell proliferation and aerobic glycolysis, which may provide new insights into novel prognostic biomarkers and therapeutic targets for CRC.


Asunto(s)
Neoplasias Colorrectales , MicroARNs , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Glucólisis/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Pronóstico
7.
Biomacromolecules ; 23(3): 798-807, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35041401

RESUMEN

Aggregation-induced emission (AIE) luminogens with highly tunable properties show great potential for many applications. In this study, we synthesized a new family of AIE-type poly(ethylene glycol)-block-poly(9-anthrylmethyl lysine) (PEG-b-PLys-An) diblock copolymers by taking advantage of amphiphilic self-assembly and rigid helical backbones. These copolymers can self-assemble into various assemblies through nanoprecipitation methods. The micelles using N,N-dimethylformamide (DMF) as a cosolvent present brighter fluorescence than the vesicles prepared from tetrahydrofuran (THF). We demonstrate that the decreased solubility of copolymers in DMF results in the formation of more compact micelles with more excimer formation during the self-assembly process, while better solvent THF favors the formation of vesicles with stretched core chains. In addition, the secondary conformation of the polypeptide block shows pronounced effects on the fluorescence property. We further show the internalization of the assemblies using two types of cells by cellular uptake experiments. By the delicate design of the block copolymer, we successfully prepare the morphology- and conformation-dependent AIE materials for potential biomedical applications.


Asunto(s)
Micelas , Polímeros , Conformación Molecular , Polietilenglicoles/química , Polímeros/química , Solubilidad
8.
J Am Chem Soc ; 143(17): 6622-6633, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33900761

RESUMEN

Nature provides us a panorama of fibrils with tremendous structural polymorphism from molecular building blocks to hierarchical association behaviors. Despite recent achievements in creating artificial systems with individual building blocks through self-assembly, molecularly encoding the relationship from model building blocks to fibril association, resulting in controlled macroscopic properties, has remained an elusive goal. In this paper, by employing a designed set of glycopeptide building blocks and combining experimental and computational tools, we report a library of controlled fibril polymorphism with elucidation from molecular packing to fibril association and the related macroscopic properties. The growth of the fibril either axially or radially with right- or left-handed twisting is determined by the subtle trade-off of oligosaccharide and oligopeptide components. Meanwhile, visible evidence for the association process of double-strand fibrils has been experimentally and theoretically proposed. Finally the fibril polymorphs demonstrated significant different macroscopic properties on hydrogel formation and cellular migration control.


Asunto(s)
Oligopéptidos/química , Oligosacáridos/química , Glicoproteínas/química , Hidrogeles/química , Simulación de Dinámica Molecular , Conformación Proteica
9.
Small ; 17(43): e2101139, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34114343

RESUMEN

The precise accumulation and extended retention of nanomedicines in the tumor tissue has been highly desired for cancer therapy. Here a novel supramolecular-peptide derived nanodrug (SPN) that can be transformed to microfibers in response to intracellular polyamine in cancer cells for significantly enhanced tumor specific accumulation and retention is developed. The supramolecular-peptide is constructed via the non-covalent interactions between cucurbit[7]uril (CB[7]) and Phe on Phe-Phe-Val-Leu-Lys-camptothecin conjugates (FFVLK-CPT, PC). The resultant amphiphilic supramolecular complex subsequently self-assembles into nanoparticles with a hydrodynamic diameter of 164.2 ± 3.7 nm. Upon internalization into spermine-overexpressed cancer cells, the CB[7]-Phe host-guest pairs can be competitively dissociated by spermine and can release free PC, which immediately form ß-sheet structures and subsequently reorganize into microfibers, leading to dramatically improved accumulation, retention, and sustained release of CPT in tumor cells for highly effective cancer therapy. Accordingly, this SPN exhibit rather low toxicity against non-cancerous cells due to the morphological stability and fast exocytosis of the nanodrugs in those cells without abundant spermine. This study reports the first supramolecular peptide capable of polyamine-responsive "nanoparticle-to-microfiber" transformation for specific tumor therapy with minimal side effects. This work also offers novel insights to the design and development of stimuli-responsive nanomaterials as precision medicine.


Asunto(s)
Neoplasias , Preparaciones Farmacéuticas , Humanos , Nanomedicina , Neoplasias/tratamiento farmacológico , Péptidos , Poliaminas
10.
Acc Chem Res ; 53(4): 740-751, 2020 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32174104

RESUMEN

In biology, polymorphism is a well-known phenomenon by which a discrete biomacromolecule can adopt multiple specific conformations in response to its environment. This term can be extended to the ability of biomacromolecules to pack into different ordered patterns. Thus, exploration and control of the polymorphism of biomacromolecules via supramolecular methods have been key steps in achieving bioinspired structures, developing bioinspired functional materials, and exploring the mechanisms of these self-assembly processes, which are models for more complex biological systems. This task could be difficult for proteins and carbohydrates due to the complicated multiple noncovalent interactions of these two species which can hardly be manipulated.In this account, dealing with the structural polymorphisms from biomacromolecular assemblies, we will first briefly comment on the problems that carbohydrate/protein assemblies are facing, and then on the basis of our long-term research on carbohydrate self-assemblies, we will summarize the new strategies that we have developed in our laboratory in recent years to explore and control the polymorphism of carbohydrate/protein assemblies.Considering the inherent ability of carbohydrates to recognize lectin, we proposed the "inducing ligand" strategy to assemble natural proteins into various nanostructures with highly ordered packing patterns. The newly developed inducing ligand approach opened a new window for protein assembly where dual noncovalent interactions (i.e., carbohydrate-protein interactions and dimerization of rhodamine) instead of the traditionally used protein-protein interactions direct the assembly pattern of proteins. As a result, various polymorphisms of protein assemblies have been constructed by simply changing the ligand chemical structure and/or the rhodamine dimerization.Another concept that we proposed for glycopolymer self-assembly is DISA (i.e., deprotection-induced glycopolymer self-assembly). It is well known that protection-deprotection chemistry has been employed to construct complex oligosaccharide structures. However, its application in glycopolymer self-assembly has been overlooked. We initiated this new strategy with diblock copolymers. Such copolymers with a carbohydrate block having protected pendent groups exist as single chains in organic media. The self-assembly can be initiated by the deprotection of the pendent groups. The process was nicely controlled by introducing various protective groups with different deprotection rates. Later on, the DISA process has been proven practical in water and even in the cellular environment, which opens a new avenue for the development of polymeric glycomaterials.Finally, the resultant polymeric glyco-materials, as a new type of biomimetic materials, provide a nice platform for investigating the functions of glycocalyx. The glycocalyx-mimicking nanoparticles achieved unprecedent functions which exceed their carbohydrate precursors. Here, the reversion of tumor-associated macrophages induced by glycocalyx-mimicking nanoparticles will be discussed with potential applications in cancer immunotherapy, where such a reversion effect could be combined with other methods (e.g., tumor checkpoint blockade).


Asunto(s)
Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Proteínas/química , Animales , Humanos , Proteínas/metabolismo
11.
Microb Cell Fact ; 20(1): 86, 2021 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-33882930

RESUMEN

BACKGROUND: Polyketide synthases (PKSs) include ketone synthase (KS), acyltransferase (AT) and acyl carrier protein (ACP) domains to catalyse the elongation of polyketide chains. Some PKSs also contain ketoreductase (KR), dehydratase (DH) and enoylreductase (ER) domains as modification domains. Insertion, deletion or substitution of the catalytic domains may lead to the production of novel polyketide derivatives or to the accumulation of desired products. Epothilones are 16-membered macrolides that have been used as anticancer drugs. The substrate promiscuity of the module 4 AT domain of the epothilone PKS (EPOAT4) results in production of epothilone mixtures; substitution of this domain may change the ratios of epothilones. In addition, there are two dormant domains in module 9 of the epothilone PKS. Removing these redundant domains to generate a simpler and more efficient assembly line is a desirable goal. RESULTS: The substitution of module 4 drastically diminished the activity of epothilone PKS. However, with careful design of the KS-AT linker and the post-AT linker, replacing EPOAT4 with EPOAT2, EPOAT6, EPOAT7 or EPOAT8 (specifically incorporating methylmalonyl-CoA (MMCoA)) significantly increased the ratio of epothilone D (4) to epothilone C (3) (the highest ratio of 4:3 = 4.6:1), whereas the ratio of 4:3 in the parental strain Schlegelella brevitalea 104-1 was 1.4:1. We also obtained three strains by swapping EPOAT4 with EPOAT3, EPOAT5, or EPOAT9, which specifically incorporate malonyl-CoA (MCoA). These strains produced only epothilone C, and the yield was increased by a factor of 1.8 compared to that of parental strain 104-1. Furthermore, mutations of five residues in the AT domain identified Ser310 as the critical factor for MMCoA recognition in EPOAT4. Then, the mutation of His308 to valine or tyrosine combined with the mutation of Phe310 to serine further altered the product ratios. At the same time, we successfully deleted the inactive module 9 DH and ER domains and fused the ΨKR domain with the KR domain through an ~ 25-residue linker to generate a productive and simplified epothilone PKS. CONCLUSIONS: These results suggested that the substitution and deletion of catalytic domains effectively produces desirable compounds and that selection of the linkers between domains is crucial for maintaining intact PKS catalytic activity.


Asunto(s)
Bacterias/enzimología , Proteínas Bacterianas/química , Sintasas Poliquetidas/química , Ingeniería de Proteínas/métodos , Dominio Catalítico , Sintasas Poliquetidas/genética , Estructura Terciaria de Proteína , Especificidad por Sustrato
12.
Bioconjug Chem ; 31(3): 554-566, 2020 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-32078297

RESUMEN

Glycoproteins and their mimics are challenging to produce because of their large number of polysaccharide side chains that form a densely grafted protein-polysaccharide brush architecture. Herein a new approach to protein bioconjugate synthesis is demonstrated that can approach the functionalization densities of natural glycoproteins through oligosaccharide grafting. Global amino acid substitution is used to replace the methionine residues in a methionine-enriched elastin-like polypeptide with homopropargylglycine (HPG); the substitution was found to replace 93% of the 41 methionines in the protein sequence as well as broaden and increase the thermoresponsive transition. A series of saccharides were conjugated to the recombinant protein backbones through copper(I)-catalyzed alkyne-azide cycloaddition to determine reactivity trends, with 83-100% glycosylation of HPGs. Only an acetyl-protected sialyllactose moiety showed a lower level of 42% HPG glycosylation that is attributed to steric hindrance. The recombinant glycoproteins reproduced the key biofunctional properties of their natural counterparts such as viral inhibition and lectin binding.


Asunto(s)
Materiales Biomiméticos/química , Química Clic , Cobre/química , Glicoproteínas/metabolismo , Sustitución de Aminoácidos , Animales , Materiales Biomiméticos/farmacología , Perros , Hemaglutinación/efectos de los fármacos , Células de Riñón Canino Madin Darby
13.
Biomacromolecules ; 21(10): 4159-4168, 2020 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-32897696

RESUMEN

Using dynamic polymers to achieve the morphology transformation of polymeric assemblies under different conditions is challenging. Herein, we reported diversiform shape transformation of multi-responsive polymer filaments, which were self-assembled by a new kind of amphiphilic block copolymer (PVEG-PVEA) possessing dynamic and reversible acylhydrazone bonds through reacting benzaldehyde-containing block copolymers poly(vinylbenzaldehyde)-b-poly(N-(4-vinylbenzyl)-N,N-diethylamine) (PVBA-PVEA) with acylhydrazine-modified oligoethylene glycol. It was found that the resulting amphiphilic and dynamic PVEG-PVEA was capable of hierarchically self-assembling into intriguing core-branched filaments in aqueous solution. Notably, the features of acylhydrazone bonds and PVEA block endow the filaments with multi-responsiveness including acid, base, and temperature, leading to the multiple morphological transformations under such stimuli. Moreover, the core-branched filaments would further transform into polymeric braided bundles driven by hydrogen-bonding interactions of amide bonds. It is noteworthy that both core-branched filaments and braided bundles made from polymers are quite rare. These diversiform polymeric assemblies and their morphological evolution were characterized by TEM, Cryo-TEM, SEM, and DLS. Finally, we used PVBA-PVEA as a platform to facilely prepare functional polymers, such as glycopolymers via the reaction of amino-containing sugars and aldehyde groups. The obtained glycopolymers self-assembled into glycofibers for the biomimicry of glycans via binding with lectins. These findings not only are conducive to understanding of the stimulated shape change process of dynamic polymeric assemblies in water but also provide a new method for the facile fabrication of smart and functional polymeric assemblies for different potential applications, such as biomimicry and targeted drug nanocarriers or delivery vehicles.


Asunto(s)
Micelas , Polímeros , Sistemas de Liberación de Medicamentos
14.
Biomacromolecules ; 21(2): 556-565, 2020 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-31804804

RESUMEN

Near-infrared (NIR) light-responsive, injectable hydrogels are among the most promising drug delivery systems for localized anticancer therapy owing to its minimally invasive administration and remote-controlled manner. However, most currently reported NIR-responsive hydrogels were usually generated through physical mixing of thermosensitive polymers and photothermal conversion agents. In this study, a novel type of dynamic-covalent hydrogel (GelPV-DOX-DBNP) with NIR light-triggered drug release behavior was rationally designed for chemo-photothermal combination treatment of tumors. Concretely, this NIR-responsive hydrogel was formed by specific benzoxaborole-carbohydrate interactions between benzoxaborole (BOB)-modified hyaluronic acid (BOB-HA) and fructose-based glycopolymer (PolyFru), where photosensitizer perylene diimide zwitterionic polymer (PDS), reductant ascorbic acid (Vc), anticancer drug doxorubicin (DOX) as well as photothermal nanoparticles (DB-NPs) were encapsulated, simultaneously. Upon 660 nm light irradiation, both PDS and Vc within the designed hydrogel can convert oxygen into hydrogen peroxide, which could make hydrogel be degraded through the breakage of dynamic covalent bonds based on benzoxaborole-carbohydrate interactions, leading to NIR light-activatable release of DOX and DB-NPs from GelPV-DOX-DBNP. Furthermore, the released DB-NPs can convert 915 nm light irradiation into heat, enabling the application of GelPV-DOX-DBNP as a NIR-responsive drug delivery platform for both chemotherapy and photothermal therapy (PTT). In vivo results prove that GelPV-DOX-DBNP exhibited a markedly enhanced chemo-photothermal synergistic therapy for 4T1 tumor model mice, compared to chemotherapy alone or PTT. This work presents a new strategy to construct NIR light-responsive hydrogel as one alternative drug delivery system for anticancer applications.


Asunto(s)
Doxorrubicina/administración & dosificación , Hidrogeles/química , Nanopartículas/química , Terapia Fototérmica/métodos , Animales , Antibióticos Antineoplásicos/administración & dosificación , Antibióticos Antineoplásicos/farmacocinética , Ácido Ascórbico/administración & dosificación , Ácido Ascórbico/química , Doxorrubicina/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Liberación de Fármacos , Humanos , Ácido Hialurónico/química , Hidrogeles/administración & dosificación , Imidas/química , Luz , Ratones Endogámicos BALB C , Nanopartículas/administración & dosificación , Perileno/análogos & derivados , Perileno/química , Fármacos Fotosensibilizantes/química , Polímeros/química , Ratas Sprague-Dawley , Distribución Tisular , Ensayos Antitumor por Modelo de Xenoinjerto
15.
Angew Chem Int Ed Engl ; 59(24): 9617-9623, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32147901

RESUMEN

A protein Pascal triangle has been constructed as new type of supramolecular architecture by using the inducing ligand strategy that we previously developed for protein assemblies. Although mathematical studies on this famous geometry have a long history, no work on such Pascal triangles fabricated from native proteins has been reported so far due to their structural complexity. In this work, by carefully tuning the specific interactions between the native protein building block WGA and the inducing ligand R-SL, a 2D Pascal-triangle lattice with three types of triangular voids has been assembled. Moreover, a 3D crystal structure was obtained based on the 2D Pascal triangles. The distinctive carbohydrate binding sites of WGA and the intralayer as well as interlayer dimerization of RhB was the key to facilitate nanofabrication in solution. This strategy may be applied to prepare and explore various sophisticated assemblies based on native proteins.

16.
J Am Chem Soc ; 141(49): 19448-19457, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31710480

RESUMEN

Polymorphism has been the subject of investigation across different research disciplines. In biology, polymorphism could be interpreted in such a way that discrete biomacromolecules can adopt diversiform specific conformations/packing arrangement, and this polymorph-dependent property is essential for many biochemical processes. For example, bacterial flagellar filament, composed of flagellin, switches between different supercoiled state allowing the bacteria to swim and tumble. However, in artificial supramolecular systems, it is often challenging to achieve polymorph control and prediction, and in most cases, two or more concomitant polymorphs of similar formation energies coexist. Here, we show that a tetrameric protein with properly oriented binding sites on its surface can arrange into diverse protein tubes with distinct helical parameters by adding specifically designed inducing ligands. We examined several parameters of the ligand that would influence the protein tube formation and found that the flexibility of the ligand linker and the dimerization pose of the ligand complex is critical for the successful production of the tubes and eventually influence the specific helical polymorphs of the formed tubes. A surface lattice accommodation model was further developed to rationalize the geometrical relationship between each helical tube type. Molecular simulation was used to elucidate the interactions between ligands and SBA and molecular basis for polymorphic switching of the protein tubes. Moreover, the kinetics of structural formation was studied and the ligand design was found that can affect the kinetics of the protein polymerization pathway. In short, our designed protein tubes serves as an enlightening system for understanding how a protein polymer composed of a single protein switches among different helical states.


Asunto(s)
Acetilgalactosamina/química , Galactosa/química , Nanotubos/química , Proteínas de Soja/química , Sitios de Unión , Ligandos , Modelos Moleculares , Conformación Proteica
17.
J Am Chem Soc ; 141(1): 583-591, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30496688

RESUMEN

As a common phenomenon in biological systems, supramolecular transformations of biomacromolecules lead to specific biological functions as outputs, which thus inspire people to construct biomimetic dynamic systems through supramolecular transformation strategy. It should be noted that well-modulating the artificial macromolecules to fine-tune their properties is of great significance yet still remains a big challenge in polymer chemistry. In this study, through the combination of coordination-driven self-assembly and postassembly ring-opening polymerization, a six-armed star polymer linked by well-defined hexagonal metallacycle as core was successfully prepared. At the same time, the trans-platinum acetylide moieties as transformation sites were anchored onto the discrete metallacycle scaffold. Subsequently, the simple phosphine ligand-exchange reaction induced the conversions of platinum acetylide building blocks with the varied binding angles, which thus resulted in the successive hexagon-rhomboid-hexagon transformations of metallacyclic scaffold, therefore allowing for the corresponding supramolecular transformation of metallacycle-linked star polymers. More importantly, accompanied by such transformation process, property modulation of the resultant polymers has been successfully realized. In a word, by taking advantage of dynamic nature of metal-ligand coordination bonds and simple phosphine ligand-exchange reactions, facile architecture transformation of a star polymer to a linear polymer and back to a star polymer was successfully realized, which may provide a promising approach toward the construction of new dynamic polymeric materials.

18.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934840

RESUMEN

Chestnut (Castanea mollissima) is a deciduous tree species with major economic and ecological value that is widely used in the study of floral development in woody plants due its monoecious and out-of-proportion characteristics. Squamosa promoter-binding protein-like (SPL) is a plant-specific transcription factor that plays an important role in floral development. In this study, a total of 18 SPL genes were identified in the chestnut genome, of which 10 SPL genes have complementary regions of CmmiR156. An analysis of the phylogenetic tree of the squamosa promoter-binding protein (SBP) domains of the SPL genes of Arabidopsis thaliana, Populus trichocarpa, and C. mollissima divided these SPL genes into eight groups. The evolutionary relationship between poplar and chestnut in the same group was similar. A structural analysis of the protein-coding regions (CDSs) showed that the domains have the main function of SBP domains and that other domains also play an important role in determining gene function. The expression patterns of CmmiR156 and CmSPLs in different floral organs of chestnut were analyzed by real-time quantitative PCR. Some CmSPLs with similar structural patterns showed similar expression patterns, indicating that the gene structures determine the synergy of the gene functions. The application of gibberellin (GA) and its inhibitor (Paclobutrazol, PP333) to chestnut trees revealed that these exert a significant effect on the number and length of the male and female chestnut flowers. GA treatment significantly increased CmmiR156 expression and thus significantly decreased the expression of its target gene, CmSPL6/CmSPL9/CmSPL16, during floral bud development. This finding indicates that GA might indirectly affect the expression of some of the SPL target genes through miR156. In addition, RNA ligase-mediated rapid amplification of the 5' cDNA ends (RLM-RACE) experiments revealed that CmmiR156 cleaves CmSPL9 and CmSPL16 at the 10th and 12th bases of the complementary region. These results laid an important foundation for further study of the biological function of CmSPLs in the floral development of C. mollissima.


Asunto(s)
Fagaceae/crecimiento & desarrollo , Fagaceae/genética , Flores/crecimiento & desarrollo , Flores/genética , Giberelinas/farmacología , MicroARNs/genética , Familia de Multigenes , Proteínas de Plantas/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Secuencia de Bases , Secuencia Conservada , Fagaceae/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Inflorescencia/efectos de los fármacos , Inflorescencia/genética , MicroARNs/metabolismo , Especificidad de Órganos/efectos de los fármacos , Especificidad de Órganos/genética , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Reproducibilidad de los Resultados
19.
Angew Chem Int Ed Engl ; 58(36): 12481-12485, 2019 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-31317609

RESUMEN

A biomimetic conical submicrochannel (tip side ca. 400 nm) with functions of continuously tunable ion rectification and conductance based on thermoresponsive polymer layer-by-layer (LbL) self-assembly is presented. These self-assembled polymers with different layers exhibited a capability to regulate the effective channel diameter, and different ion rectifications/conductance were achieved. By controlling temperature, the conformation and wettability of the assembled polymers were reversibly transformed, thus the ion rectification/conductance could be further adjusted subtly. Owing to the synergistic effect, the ion conductance could be tuned over a wide range spanning three orders of magnitude. Moreover, the proposed system can be applied for on-demand on-off molecule delivery, which was important for disease therapy. This study opens a new door for regulating channel size according to actual demand and sensing big targets with different size with one channel.

20.
J Am Chem Soc ; 140(28): 8851-8857, 2018 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-29914259

RESUMEN

We proposed the deprotection-induced block copolymer self-assembly (DISA); that is, the deprotection of hydroxyl groups resulted in in situ self-assembly of glycopolymers. In the previous studies, block copolymers soluble in common organic solvents were employed as the starting material. In this paper, by using the protected glyco-block containing preassembled glycovesicles in water as the starting material, we moved forward and made two exceeding achievements. First, we have observed a deprotection-induced morphology transition triggered by alkali in water. The carbohydrate-carbohydrate interactions were considered to contribute to such a morphology transition during deprotection. Second, lipase was found to be an efficient enzymatic trigger in the sugar deprotection, which motivates the immune-application of this morphology transition process. When lipase and a model antigen, ovalbumin (OVA), were encapsulated inside the glycovesicles, the deprotection of sugars by lipase induced the transition of vesicles to micelles and the lipase and OVA were released accordingly. When glycovesicles were internalized by dentritic cells (DCs), the lipase from lysosomes efficiently induced the release of OVA and presentation of antigen to T cells. During the process, lysosomal lipase performed as a trigger on the deprotection of sugars and the release of protein without any other reagents. The significance of this design is that as a delivery vehicle, the protected glycovesicles not only avoided unnecessary immune activation but also worked with the released OVA together; that is, the glycovehicle successfully activated DCs and improved the presentation efficiency of T cells remarkably.


Asunto(s)
Preparaciones de Acción Retardada/química , Lipasa/administración & dosificación , Ovalbúmina/administración & dosificación , Polietilenglicoles/química , Poliestirenos/química , Azúcares/química , Animales , Presentación de Antígeno , Línea Celular , Células Dendríticas/inmunología , Lipasa/química , Ratones , Micelas , Modelos Moleculares , Ovalbúmina/química , Ovalbúmina/inmunología , Triticum/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA