RESUMEN
To assess the severity and timing of penetration and aspiration (PA) of severe dysphagia after lateral medullary syndrome (LMS) and its association with temporal characteristics. We performed videofluoroscopic swallowing studies (VFSS) in 48 patients with LMS and severe dysphagia and 26 sex- and age-matched healthy subjects. The following temporal measures were compared between groups: velopharyngeal closure duration (VCD); hyoid bone movement duration (HMD); laryngeal vestibular closure duration (LCD); upper esophageal sphincter (UES) opening duration (UOD); stage transition duration (STD) and the interval between laryngeal vestibular closure and UES opening (LC-UESop). The association between temporal measures and Penetration-Aspiration Scale (PAS) scores was analyzed. Differences in timing measures were compared between subgroups (safe swallows, and swallows with PA events during and after the swallow). PAS scores ≥ 3 were seen in 48% of swallows (4% occuring before, 35% occurred during and 61% after the swallow) from the LMS patients. Significantly longer STD and LC-UESop were found in the patients compared to the healthy subjects (p < 0.05). Significant negative correlations with PA severity were found for HMD, LCD, and UOD. Short UOD was the strongest predictor with an area under the receiver-operating-characteristic curve of 0.66. UOD was also significantly shorter in cases of PA after the swallow (p < 0.01). Patients with LMS involving severe dysphagia exhibit a high frequency of PA (mostly during and after swallowing). PA events were associated with shorter UOD, HMD, and LCD. Notably, shortened UOD appears to be strongly associated with PA.
Asunto(s)
Trastornos de Deglución , Síndrome Medular Lateral , Humanos , Trastornos de Deglución/etiología , Síndrome Medular Lateral/complicaciones , Deglución , Aspiración Respiratoria/etiología , FluoroscopíaRESUMEN
Photocatalysis is one of the most promising pathways to relieve the environmental contamination caused by the rapid development of modern technology. In this work, we demonstrate a green manufacturing process for the 3D/3D rod-shaped bamboo charcoal/Bi2WO6 photocatalyst (210BC-BWO) by controlled carbonization temperature. A series of morphology characterization and properties investigations (XRD, SEM, UV-vis DRS, transient photocurrent response, N2 absorption-desorption isotherms) indicate a 210BC-BWO photocatalyst with higher charge separation efficiency, larger surface area, and better adsorption capacity. The excellent photocatalytic performance was evaluated by degrading rhodamine B (RhB) (98.5%), tetracycline hydrochloride (TC-HCl) (77.1%), and H2 evolution (2833 µmol·g-1·h-1) coupled with furfuryl alcohol oxidation (3097 µmol·g-1·h-1) under visible light irradiation. In addition, the possible mechanisms for degradation of organic pollutants, H2 evolution, and furfuryl alcohol oxidation were schematically investigated, which make it possible to exert photocatalysis by increasing the active radical. This study shows that the combination of bamboo charcoal and bismuth tungstate can be a powerful photocatalyst that rationally combines H2 evolution coupled with furfuryl alcohol oxidation and degradation of pollutants.
RESUMEN
This study is designed to compare drug encapsulation by cucurbit[7]uril and ß-cyclodextrin, using fluorofenidone as a model drug. Single-crystal X-ray diffraction analysis was employed to successfully determine the crystal structures of fluorofenidone·H+@cucurbit[7]uril Form, fluorofenidone@cucurbit[7]uril Form, and fluorofenidone@ß-cyclodextrin Form. Keto-enol tautomerization of fluorofenidone mediated by cucurbit[7]uril in acid solution is confirmed by crystal structures, pH titration, and nuclear magnetic resonance experiments. However, ß-cyclodextrin cannot cause the keto-enol tautomerization of fluorofenidone under similar conditions. The phase solubility study demonstrates that cucurbit[7]uril has a much higher solubilization capacity for fluorofenidone than ß-cyclodextrin in 0.1 M HCl since the Kc values of fluorofenidone with cucurbit[7]uril and ß-cyclodextrin were 1223.97 ± 452.68 and 78.49 ± 10.56 M-1, respectively. Excellent solubility can be attributed to the keto-enol tautomerization of fluorofenidone under the conditions of cucurbit[7]uril in acid solution. The enol form of fluorofenidone is encapsulated by cucurbit[7]uril by hydrogen bonding interaction and hydrophobic interaction to increase binding affinity. Rat pharmacokinetic studies demonstrate that the area under the plasma concentration-time curve from time 0 to 7 h value of fluorofenidone@cucurbit[7]uril complex is 1.70-fold greater than that of free fluorofenidone, and the mean residence time from time 0 to 7 h is slightly prolonged from 1.29 to 1.76 h (P < 0.01) after oral administration. However, no significant difference is found between fluorofenidone and fluorofenidone@ß-cyclodextrin complex. This work indicates that the induction of keto-enol tautomerization of drugs using macrocyclic molecules has the potential to be an effective method to improve their solubility and bioavailability, providing valuable insights for the application of macrocyclic molecules in the biomedical field.
Asunto(s)
Compuestos Macrocíclicos , beta-Ciclodextrinas , Ratas , Animales , Solubilidad , beta-Ciclodextrinas/química , Compuestos Macrocíclicos/química , Hidrocarburos Aromáticos con Puentes/químicaRESUMEN
Microbial-induced carbonate precipitation (MICP) is being investigated to repair concrete cracks because of its good durability and compatibility with cementitious matrix. However, during the in-situ application, the repairing often lasts weeks, even months. And the strength regain is quite low. The repairing time is largely determined by the CaCO3 yield, and the strength regain after the repair is closely related to the cohesion and bonding strength of CaCO3 itself. Thus, the purpose of this paper is to obtain an efficient precipitation of bio-CaCO3 with both high yield and good cohesion to improve the in-situ repairing efficiency. Firstly, the most influential factors on urease activity were screened and the precipitation kinetics were detailly investigated. The results show that the CaCO3 with the largest yield and cohesion was obtained when the bacterial concentration was 107 cells/mL and the concentration of urea and calcium was both 0.5 M at 20 °C. This weight loss of bio-CaCO3 was 9.24% under ultrasonic attack. Secondly, two models were established to quantify or semi-quantify the relationship between the most influential factors and the yield and cohesion of precipitates, respectively. The results showed the order of contribution for bio-CaCO3 precipitation was calcium ions concentration > bacterial concentration > urea concentration > temperature > initial pH. According to these models, the required yield and cohesion of CaCO3 by engineering could be obtained by adjusting affecting factors. Models were proposed for guiding the application of MICP in practical engineering. KEY POINTS: ⢠Screened the most affecting factors on urease activity and investigated the precipitation kinetics. ⢠Obtained optimal conditions of bio-CaCO. ⢠Established two models in order to give some guidance for practical civil engineering.
Asunto(s)
Calcio , Ureasa , Carbonato de Calcio , Precipitación Química , Bacterias , UreaRESUMEN
Naïve T and T memory cell subsets are closely related to immune response and can provide important information for the diagnosis and treatment of immunological and hematological disorders. Lymphocyte compartment undergoes dramatic changes during adulthood; age-related reference values derived from healthy individuals are crucial. However, extensively detailed reference values of peripheral blood lymphocytes in the whole spectrum of adulthood detected by multi-color flow cytometry on a single platform are rare. Three hundred and nine healthy adult volunteers were recruited from Tianjin in China. The absolute counts and percentages of CD3+CD4+ T cells, CD3+CD8+ T cells, naïve T cells (Tn), T memory stem cells (Tscm), central memory T cells (Tcm), effector memory T cells (Tem), and terminal effector T cells (Tte) were detected by flow cytometry with single platform technologies. Reference range of absolute counts and percentage of T lymphocyte subsets were formulated by different age and gender. The results showed that Tn and Tscm cells, which had stem cell properties, decreased with aging; while, Tcm and Tem increased with aging, which increased from 18 to 64 years old but presented no significant change over the 65 years old. Gender had an influence on the fluctuation of lymphocyte subsets, the absolute count of CD3+CD8+, CD8+Tcm, CD8+Tem in males were higher than those in females. The reference values of percentages and absolute numbers of naïve T and T memory cell subsets can help doctors to understand the immune state of patients and evaluate conditions of prognosis then adjust the treatment for patients. (Chinese Clinic Trial Registry number: ChiCTR-IOR-17014139.).
Asunto(s)
Subgrupos Linfocitarios , Subgrupos de Linfocitos T , Adolescente , Adulto , Anciano , Linfocitos T CD4-Positivos , Femenino , Citometría de Flujo , Humanos , Memoria Inmunológica , Recuento de Linfocitos , Masculino , Persona de Mediana Edad , Valores de Referencia , Adulto JovenRESUMEN
Unassisted photovoltaic (PV) water splitting to hydrogen system is of great potential for future environmental-friendly fuel production from renewable solar energy. However, industrialization simultaneously requires higher efficiency, sustained stability and a lower cost for the system. In this work, the ultrathin cobalt/iron-molybdenum oxides nanosheet on nickel foam (NF) is prepared for efficient HER and OER, respectively, delivering a relatively low voltage of 1.45 V at 10 mA cm-2 in two-electrodes configuration. Water electrolysis at low voltage driven by electrocatalysts is critical for realizing energy conversion. Integrated with a commercial monocrystalline silicon cell, the H2 area specific activity of 0.47 L m-2 h-1 is achieved with a solar-to-hydrogen efficiency of 15.1% under solar simulator illumination (100 mW cm-2 ) and no performance degradation appeares over 160 h. Such a solar conversion technology demonstrates the potential for long-term and cost-efficient H2 production in large-scale industrialization and provides an exploration for new-type of energy-conversion system.
RESUMEN
Electrochemical CO2 reduction to formate offers a mild and feasible pathway for the utilization of CO2 , and bismuth is a promising metal for its unique hydrogen evolution reaction inhibition. Reported works of Bi-based electrodes generally exhibit high selectivity while suffering from relatively narrow working potential range. From the perspective of electronic modification engineering, B-doped Bi is prepared by a facile chemical reduction method in this work. With B dopant, above 90% Faradaic efficiency for formate over a broad window of working potential of -0.6 to -1.2 V (vs. reversible hydrogen electrode) is achieved. In situ Raman spectroscopy, X-ray adsorption spectroscopy, and computational analysis demonstrate that the B dopant induces the formation of electron-rich bismuth, which is in favor of the formation of formate by fine-tuning the adsorption energy of *OCHO. Moreover, full-cell electrolysis system coupled with photovoltaic device is constructed and achieves the solar-to-formate conversion efficiency as high as 11.8%.
RESUMEN
Precise gene editing of model organisms is required for accurately modeling human diseases and deciphering gene functions. In this study, we used a pair of guide RNAs (sgRNAs), which in vitro transcribed along with other CRISPR RNA components, to generate two cleavage sites flanking pig GJB2 (pGJB2) CDS. By using long single-stranded DNAs (lssDNA) as homology-directed repair (HDR) templates, we efficiently obtained two gene-edited pigs, of which GJB2 CDS replaced with CDSs containing human GJB2 c.235delC mutation and orthologous human p.V37I mutation, respectively. These mutations were commonly observed in patients with hearing loss. Genetic analysis of the two gene-edited pigs showed that the HDR-derived gene-editing efficiency were as high as 80% (4/5) and 50% (2/4), respectively. While no mutation was observed in the group of single cutting with one sgRNA covering the 235th nucleotide C in pGJB2 CDS, using a short single-stranded oligo DNA containing c.235delC mutation as HDR template. Extra experiments proved that the intended mutations were successfully transmitted to offspring or extensively integrated into various tissues including gonad of founder pigs. Our work indicated that the new "double cutting with lssDNA template" gene editing method can expand sgRNA selection scope and avoids direct cutting of gene CDS. Additionally, can introduce precise mutations into mammalian genomic sites, especially those with unavailable proper protospacer sequence or being resistant to gene editing. Moreover, this method can be performed with CRISPR RNA reagents instead of CRISPR ribonucleoproteins applied in previous reports.
Asunto(s)
Animales Modificados Genéticamente/genética , Conexina 26/genética , Mutación , Porcinos Enanos/genética , Alelos , Animales , Sistemas CRISPR-Cas , ADN de Cadena Simple , Femenino , Edición Génica/métodos , Humanos , Masculino , Porcinos , CigotoRESUMEN
Although great achievements have been made in the synthesis of giant lanthanide clusters, novel structural models are still scarce. Herein, we report a giant lanthanide cluster Dy76 , constructed from [Dy3 (µ3 -OH)4 ] and [Dy5 (µ4 -O)(µ3 -OH)8 ] building blocks. As the largest known Dy cluster, the structure of Dy76 can be seen as arising from the fusion of two Dy48 clusters; these clusters can be isolated under various synthetic conditions and were characterized by single-crystal X-ray diffraction. This new, fused structural model of the pillar motif has not been found in Ln clusters. Furthermore, the successful conversion of Dy76 back into Dy48 in a retrosynthetic manner supports the proposed fusion formation mechanism of Dy76 . Electrospray ionization mass spectrometry (ESI-MS) analysis suggests that the metal cluster skeleton of Dy76 shows good stability in various solvents. This work not only reveals a new structural type of Ln clusters but also provides insight into the novel fusion assembly process.
RESUMEN
OBJECTIVE: To explore the effect of peptide extract from scorpion venom (PESV) to multidrug resistance (MDR) of leukemic stem cell (LSC) in vivo. METHODS: K562/A02 cells were cultured and collected in the logarithmic phase. K562/A02 stem cells were screened using immunomagnetic beads for reserve. K562/A02 LSC was injected to 5 of 40 BABL/c nude mice for preparing subcutaneous tumor. The rest 35 nude mice were then randomly divided into 7 groups, i.e., the normal control group, the model group, the Adriamycin (ADM) group, the PESV group, the ADM +high dose PESV group, the ADM + middle dose PESV group, the ADM +low dose PESV group, 5 in each group. Tumor tissue was embedded in all groups except the normal control group. One milliliter normal saline was peritoneally injected to mice in the model group after modeling, once per day. ADM 0. 05 mg was peritoneally injected to mice in the ADM group, once per other day. PESV 2 µg was peritoneally injected to mice in the PESV group, once per day. Mice in 3 ADM + PESV groups were peritoneally injected with ADM 0. 05 mg (once per other day) plus PESV (5, 2, and 1 µg respectively, once per day). All medication lasted for 14 days. P-glycoprotein (P-gp) was detected using flow cytometry. Breast cancer resistance protein (BCRP) and mRNA expression of multidrug resistance 1 (MDR1) were measured using RT-PCR. Aldehyde dehydrogenase 1 (ALDH1) was detected using immunohistochemistry. Phosphoinositide 3-kinase (PI3K) was detected using Western blot. NF-κB content was detected using ELISA. RESULTS: CD34 + CD38-ratio was 31.5% and IC50 was (60.33 ± 10. 68) µg/mL before K562/A02 cells were screened with immunomagnetic beads, while they were 92. 8% and (58. 33 ±9. 72) µg/mL after screen. The tumor formation rate was 100% in modeling mice. Compared with the model group, no statistical difference of each index occurred in the ADM group (P <0. 05). There was statistical difference in BCRP, MDR1 mRNA, or NF-κB factor between the model group and the PESV group (P <0. 05). The expression level of P-gp obviously decreased and the protein expression of P13K was down-regulated in 3 ADM + PESV groups (P <0. 05); mRNA expression of BCRP decreased and mRNA ex- pression of MDR1 obviously increased in the ADM + high dose PESV group and the ADM + middle dose PESV group, with statistical difference (P <0. 05). Protein expression of P13K was down-regulated in the ADM+ high dose PESV group, with statistical difference (P <0. 05). P-gp value, BCRP mRNA expression, MDR1 mRNA expression, PI3K, and NF-κB factor were all obviously down-regulated in the ADM +high dose PESV group, as compared with the ADM group and the PESV group respectively (P <0. 05). There was no statistical difference in ALDH1 positive rate among all groups (P >0. 05). Conclusion PESV combined ADM could down-regulate expression levels of P-gp, BCRP, MDR1, P13K, and NF-κB, strengthen the sensitivity of K562/A02 LSC to ADM in vivo, and reverse MDR of LSC.
Asunto(s)
Resistencia a Múltiples Medicamentos , Resistencia a Antineoplásicos , Leucemia Eritroblástica Aguda , Venenos de Escorpión , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Animales , Doxorrubicina , Humanos , Células K562 , Leucemia Eritroblástica Aguda/patología , Ratones , Ratones Desnudos , Péptidos , Fosfatidilinositol 3-Quinasas , Venenos de Escorpión/farmacología , Células MadreRESUMEN
BACKGROUND: Warts result from an infection with the human papilloma virus (HPV). Plantar warts, also known as Verruca plantaris, can be notably painful for the patient and possess contagious qualities, thus necessitating assertive treatment. Despite several available approaches for addressing plantar warts, efficacy remains elusive. CASE PRESENTATION: One 22-year-old firefighter suffered from numerous plantar warts. After 26 days of traditional Chinese medicine soaking, the rashes completely disappeared. The treatment was without complications or discomfort, and a three-month follow-up showed no recurrence. CONCLUSION: Our case investigation highlighted the efficacy of herbal soaking as a safe, painless, and non-invasive therapeutic option, positioning it as a potential avenue for managing multiple plantar warts.
Asunto(s)
Enfermedades del Pie , Verrugas , Humanos , Anciano de 80 o más Años , Medicina Tradicional China , Verrugas/tratamiento farmacológico , Enfermedades del Pie/terapia , Papillomaviridae , Resultado del TratamientoRESUMEN
Plastic pollution in wetlands has recently emerged as an urgent environmental problem. However, the impacts of plastic contamination on soil-plant properties and greenhouse gas (GHG) emissions in wetlands remain unclear. Thus, this study conducted a meta-analysis based on 44 study sites to explore the influence of plastic pollution on soil physicochemical variables, soil microorganisms, enzyme activity, functional genes, plant characteristics, and GHG emissions (CO2, CH4, and N2O) in different wetland types. Based on the collected dataset, the plastic pollution significantly increased soil organic matter and organic carbon by on average 28.9 % and 34.2 %, respectively, while decreased inorganic nutrient elements, bacteria alpha diversity and enzyme activities by an average of 5.9 -14.2 %. The response of bacterial abundance to plastic pollution varied depending on phylum classes. Plant biomass and photosynthetic efficiency were decreased by an average of 12.8 % and 18.4 % due to plastic pollution. The concentration and exposure time of plastics play a key role in influencing the soil and plant properties in wetlands. Furthermore, plastic exposure notably increased the abundance of the functional genes related to C degradation and the ammonia oxidizing microorganisms, and the consequent CO2 and N2O emissions (with effect sizes of 2.10 and 1.94, respectively). We also found that plastic concentrations and exposure duration affected the wetland soil-plant system. Our results might be helpful to design further investigations on plastic effects and develop appropriate measures for mitigating plastic pollution in wetlands.
RESUMEN
The aims of this study were to investigate whether the ferroptosis is involved in intestinal Behçet's syndrome (IBS), and to identify if miR-141-3p could attenuate RAS-selective lethal 3 (RSL3)-induced ferroptosis and intestinal epithelial to mesenchymal transition (EMT) via directly inhabits zinc fnger E-box binding homeobox 1 (ZEB1). The expressions of ferroptosis-related proteins in the intestinal tissues of patients with IBS were investigated by immunohistochemistry and quantitative real-time PCR (qRT-PCR). Malondialdehyde (MDA) contents of the intestinal tissues and cells were detected. Serum from IBS patients and RSL3 were co-cultured with intestinal epithelial cells in vitro. In order to investigate whether RSL3-induced ferroptosis can be ameliorated by miR-141-3p, the intestinal epithelial cells were firstly stimulated with RSL3 and then incubated with miR-141-3p mimics. Western blot was used to measure the expression of EMT and ferroptosis-related proteins. Expression of GPX4 (22.51% ± 2.05%, 51.75% ± 3.47%, t = - 7.77, p = 0.000) and xCT (17.49% ± 1.57%, 28.73% ± 1.75%, t = - 4.38, p = 0.003) were significantly lower in intestinal mucosal tissues of patients with IBS compared with HC group. Compared with the HC samples, the IBS specimens had significantly higher MDA (t = 4.32, p = 0.01). Moreover, the relative mRNA levels of ferritin light chain (FTL) (t = 4.07, p = 0.02) and ferritin heavy chain (FTH) (t = 8.82, p = 0.001) in the intestinal tissues were significant higher in IBS patients than in HC group. Serum from IBS patients could induce intestinal epithelial cell ferroptosis in vitro. Moreover, miR-141-3p could attenuate intestinal epithelial cell ferroptosis-induced by RSL3 and intestinal EMT via targeting ZEB1 in vitro. Ferroptosis were induced in patients with IBS. Moreover, the serum from IBS patients could induce ferroptosis in vitro. miR-141-3p could attenuate intestinal epithelial cell ferroptosis and intestinal EMT via targeting ZEB1. Therefore, miR-141-3p may open new avenues for the treatment of IBS in the future. Key Points ⢠Ferroptosis in IBS is first reported in this study. ⢠In this study, we explored that the serum from IBS patients could induce ferroptosis in vitro and miR-141-3p could attenuate intestinal epithelial cell ferroptosis and intestinal EMT via targeting ZEB1.
Asunto(s)
Síndrome de Behçet , Transición Epitelial-Mesenquimal , Ferroptosis , MicroARNs , Homeobox 1 de Unión a la E-Box con Dedos de Zinc , Humanos , MicroARNs/metabolismo , Masculino , Homeobox 1 de Unión a la E-Box con Dedos de Zinc/metabolismo , Femenino , Adulto , Síndrome de Behçet/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Persona de Mediana EdadRESUMEN
Introduction: Linezolid is an oxazolidinone antibiotic that is active against drug-resistant Gram-positive bacteria and multidrug-resistant Mycobacterium tuberculosis. Real-world studies on the safety of linezolid in large populations are lacking. This study aimed to determine the adverse events associated with linezolid in real-world settings by analyzing data from the US Food and Drug Administration (FDA) Adverse Event Reporting System (FAERS). Methods: We retrospectively extracted reports on adverse drug events (ADEs) from the FAERS database from the first quarter of 2004 to that of 2023. By using disproportionality analysis including reporting odds ratio (ROR), proportional reporting ratio (PRR), Bayesian Confidence Propagation Neural Network (BCPNN), along with the multi-item gamma Poisson shrinker (MGPS), we evaluated whether there was a significant association between linezolid and ADE. The time to onset of ADE was further analyzed in the general population and within each age, weight, reporting population, and weight subgroups. Results: A total of 11,176 reports of linezolid as the "primary suspected" drug and 263 significant adverse events of linezolid were identified, including some common adverse events such as thrombocytopenia (n = 1,139, ROR 21.98), anaemia (n = 704, ROR 7.39), and unexpected signals that were not listed on the drug label such as rhabdomyolysis (n = 90, ROR 4.33), and electrocardiogram QT prolonged (n = 73, ROR 4.07). Linezolid-induced adverse reactions involved 27 System Organ Class (SOC). Gender differences existed in ADE signals related to linezolid. The median onset time of all ADEs was 6 days, and most ADEs (n = 3,778) occurred within the first month of linezolid use but some may continue to occur even after a year of treatment (n = 46). Conclusion: This study reports the time to onset of adverse effects in detail at the levels of SOC and specific preferred term (PT). The results of our study provide valuable insights for optimizing the use of linezolid and reducing potential side effects, expected to facilitate the safe use of linezolid in clinical settings.
RESUMEN
Depression is a heterogeneous syndrome with certain individual differences among subjects. Exploring a feature selection method that can effectively mine the commonness intra-groups and the differences inter-groups in depression recognition is therefore of great significance. This study proposed a new clustering-fusion feature selection method. Hierarchical clustering (HC) algorithm was used to capture the heterogeneity distribution of subjects. Average and similarity network fusion (SNF) algorithms were adopted to characterize the brain network atlas of different populations. Differences analysis was also utilized to obtain the features with discriminant performance. Experiments showed that compared with traditional feature selection methods, HCSNF method yielded the optimal classification results of depression recognition in both sensor and source layers of electroencephalography (EEG) data. Especially in the beta band of EEG data at sensor layer, the classification performance was improved by more than 6%. Moreover, the long-distance connections between parietal-occipital lobe and other brain regions not only have high discriminative power, but also significantly correlate with depressive symptoms, indicating the important role of these features in depression recognition. Therefore, this study may provide methodological guidance for the discovery of reproducible electrophysiological biomarkers and new insights into common neuropathological mechanisms of heterogeneous depression diseases.
Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico , Electroencefalografía/métodos , Encéfalo/fisiología , Algoritmos , Análisis por ConglomeradosRESUMEN
BACKGROUND: A 10-Hz cerebellar repetitive transcranial magnetic stimulation (rTMS) could increase corticobulbar tract excitability in healthy individuals. However, its clinical efficacy for poststroke dysphagia (PSD) remains unclear. OBJECTIVE: To investigate the effectiveness of 10-Hz cerebellar rTMS in PSD patients with infratentorial stroke (IS). METHODS: In this single-blinded, randomized controlled trial, 42 PSD patients with subacute IS were allocated to three groups: bilateral cerebellar rTMS (biCRB-rTMS), unilateral cerebellar rTMS (uniCRB-rTMS), or sham-rTMS. The stimulation parameters were 5 trains of 50 stimuli at 10 Hz with an interval of 10 s at 90% of the thenar resting motor threshold (RMT). The Functional Oral Intake Scale (FOIS) was assessed at T0 (baseline), T1 (day 0 after intervention), and T2 (day 14 after intervention), whereas the Dysphagia Outcome and Severity Scale (DOSS), Penetration Aspiration Scale (PAS), and neurophysiological parameters were evaluated at T0 and T1. RESULTS: Significant time and intervention interaction effects were observed for the FOIS score (F = 3.045, p = 0.022). The changes in the FOIS scores at T1 and T2 were both significantly higher in the biCRB-rTMS group than in the sham-rTMS group (p < 0.05). The uniCRB-rTMS and biCRB-rTMS groups demonstrated greater changes in the DOSS and PAS at T1, compared with the sham-rTMS group (p < 0.05). Bilateral corticobulbar tract excitability partly increased in the biCRB-rTMS and uniCRB-rTMS groups at T1, compared with T0. The percent changes in corticobulbar tract excitability parameters at T1 showed no difference among three groups. CONCLUSIONS: A 10-Hz bilateral cerebellar rTMS is a promising, noninvasive treatment for subacute infratentorial PSD.
Asunto(s)
Trastornos de Deglución , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Trastornos de Deglución/etiología , Trastornos de Deglución/terapia , Estimulación Magnética Transcraneal , Accidente Cerebrovascular/terapia , Resultado del TratamientoRESUMEN
In this work, a novel two-dimensional/two-dimensional (2D/2D) hybrid photocatalyst consisting of Bi2WO6 (BWO) nanosheets and cotton fibers biochar (CFB) nanosheets was successfully prepared via a facile hydrothermal process. The as-prepared photocatalysts were characterized by a variety of techniques, including X-ray diffraction, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and UV-vis diffuse reflectance spectroscopy. It was revealed that amorphous CFB nanosheets were uniformly immobilized on the surface of crystalline BWO nanosheets, and an intimate contact between CFB and BWO was constructed. The photocatalytic activities of the prepared BWO and CFB-BWO photocatalysts were evaluated by photocatalytic degradation of rhodamine B (RhB) and tetracycline hydrochloride (TC-HCl) in aqueous solutions under visible-light irradiation. Compared to the pristine BWO, the CFB-BWO composite photocatalysts exhibited significant enhancement in photocatalytic activities. Among all CFB-BWO samples, the 9CFB-BWO sample with the CFB mass ratio of 9% exhibited optimal photocatalytic activities for RhB or TC-HCl degradation, which was ca. 1.8 times or 2.4 times that of the pristine BWO, respectively. The improvement in photocatalytic activities of the CFB-BWO photocatalysts could be ascribed to the enhanced migration and separation of photogenerated charge carriers due to the formation of a 2D/2D interfacial heterostructure between CFB and BWO. Meanwhile, the possible mechanism of CFB-BWO for enhanced photocatalytic performance was also discussed. This work may provide a new approach to designing and developing novel BWO-based photocatalysts for the highly efficient removal of organic pollutants.
RESUMEN
Exploring efficient electrocatalysts with fundamental understanding of the reaction mechanism is imperative in CO2 electroreduction. However, the impact of sluggish water dissociation as proton source and the surface species in reaction are still unclear. Herein, we report a strategy of promoting protonation in CO2 electroreduction by implementing oxygen vacancy engineering on Bi2O2CO3 over which high Faradaic efficiency of formate (above 90%) and large partial current density (162 mA cm-2) are achieved. Systematic study reveals that the production rate of formate is mainly hampered by water dissociation, while the introduction of oxygen vacancy accelerates water dissociation kinetics by strengthening hydroxyl adsorption and reduces the energetic span of CO2 electroreduction. Moreover, CO3* involved in formate formation as the key surface species is clearly identified by electron spin resonance measurements and designed in situ Raman spectroscopy study combined with isotopic labelling. Coupled with photovoltaic device, the solar to formate energy conversion efficiency reaches as high as 13.3%.
RESUMEN
Objectives: Several studies have shown abnormal network topology in patients with major depressive disorder (MDD). However, changes in functional brain networks associated with electroconvulsive therapy (ECT) remission based on electroencephalography (EEG) signals have yet to be investigated. Methods: Nineteen-channel resting-state eyes-closed EEG signals were collected from 24 MDD patients pre- and post-ECT treatment. Functional brain networks were constructed by using various coupling methods and binarization techniques. Changes in functional connectivity and network metrics after ECT treatment and relationships between network metrics and clinical symptoms were explored. Results: ECT significantly increased global efficiency, edge betweenness centrality, local efficiency, and mean degree of alpha band after ECT treatment, and an increase in these network metrics had significant correlations with decreased depressive symptoms in repeated measures correlation. In addition, ECT regulated the distribution of hubs in frontal and occipital lobes. Conclusion: ECT modulated the brain's global and local information-processing patterns. In addition, an ECT-induced increase in network metrics was associated with clinical remission. Significance: These findings might present the evidence for us to understand how ECT regulated the topology organization in functional brain networks of clinically remitted depressive patients.
RESUMEN
Patients with infratentorial stroke (IS) exhibit more severe dysphagia and a higher risk of aspiration than patients with supratentorial stroke. Nevertheless, a large proportion of patients with IS regain swallowing function within 6 months; however, the neural mechanism for this recovery remains unclear. We aimed to investigate possible neuroplastic changes involved using functional magnetic resonance imaging (fMRI) and their relation to swallowing function. We assessed 21 patients with IS (mean age: 59.9 ± 11.1 years) exhibiting dysphagia in the subacute phase and 21 healthy controls (mean age: 57.1 ± 7.8 years). Patient evaluations were based on the functional oral intake scale (FOIS), videofluoroscopic swallow study (VFSS), and fMRI. Temporal swallowing measures and the penetration-aspiration scale (PAS) were obtained using VFSS. Whole-brain-medulla resting-state functional connectivity (rsFC) was calculated and compared between patients and healthy controls. The rsFCs were also correlated with functional measures within the patient group. In patients with IS, whole-brain-medulla rsFCs were significantly higher in the precuneus, the left and right precentral gyrus, and the right supplementary motor area compared to those in healthy controls (P < 0.001, family-wise error-corrected cluster-level P < 0.05). The rsFCs to the medulla for the left (r = -0.507, P = 0.027) and right side (r = -0.503, P = 0.028) precentral gyrus were negatively correlated with the PAS. The rsFC between the left (r = 0.470, P = 0.042) and right (r = 0.459, P = 0.048) precentral gyrus to the medulla was positively correlated with upper esophageal sphincter opening durations (UOD). In addition, PAS was also correlated with UOD (r = -0.638, P = 0.003) whereas the laryngeal closure duration was correlated with the hyoid bone movement duration (r = 0.550, P = 0.015). Patients with IS exhibited overall modulation of cortical-medulla connectivity during the subacute phase. Patients with higher connectivities showed better swallowing performance. These findings support that there is cortical involvement in swallowing regulation after IS and can aid in determining potential treatment targets for dysphagia.