Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.079
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2315982121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38536757

RESUMEN

Throughout evolution, arboviruses have developed various strategies to counteract the host's innate immune defenses to maintain persistent transmission. Recent studies have shown that, in addition to bacteria and fungi, the innate Toll-Dorsal immune system also plays an essential role in preventing viral infections in invertebrates. However, whether the classical Toll immune pathway is involved in maintaining the homeostatic process to ensure the persistent and propagative transmission of arboviruses in insect vectors remain unclear. In this study, we revealed that the transcription factor Dorsal is actively involved in the antiviral defense of an insect vector (Laodelphax striatellus) by regulating the target gene, zinc finger protein 708 (LsZN708), which mediates downstream immune-related effectors against infection with the plant virus (Rice stripe virus, RSV). In contrast, an antidefense strategy involving the use of the nonstructural-protein (NS4) to antagonize host antiviral defense through competitive binding to Dorsal from the MSK2 kinase was employed by RSV; this competitive binding inhibited Dorsal phosphorylation and reduced the antiviral response of the host insect. Our study revealed the molecular mechanism through which Toll-Dorsal-ZN708 mediates the maintenance of an arbovirus homeostasis in insect vectors. Specifically, ZN708 is a newly documented zinc finger protein targeted by Dorsal that mediates the downstream antiviral response. This study will contribute to our understanding of the successful transmission and spread of arboviruses in plant or invertebrate hosts.


Asunto(s)
Arbovirus , Hemípteros , Oryza , Tenuivirus , Animales , Arbovirus/genética , Hemípteros/fisiología , Tenuivirus/fisiología , Insectos Vectores , Antivirales/metabolismo , Oryza/genética , Enfermedades de las Plantas
2.
Proc Natl Acad Sci U S A ; 121(16): e2318783121, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38588412

RESUMEN

Communication between insects and plants relies on the exchange of bioactive molecules that traverse the species interface. Although proteinic effectors have been extensively studied, our knowledge of other molecules involved in this process remains limited. In this study, we investigate the role of salivary microRNAs (miRNAs) from the rice planthopper Nilaparvata lugens in suppressing plant immunity. A total of three miRNAs were confirmed to be secreted into host plants during insect feeding. Notably, the sequence-conserved miR-7-5P is specifically expressed in the salivary glands of N. lugens and is secreted into saliva, distinguishing it significantly from homologues found in other insects. Silencing miR-7-5P negatively affects N. lugens feeding on rice plants, but not on artificial diets. The impaired feeding performance of miR-7-5P-silenced insects can be rescued by transgenic plants overexpressing miR-7-5P. Through target prediction and experimental testing, we demonstrate that miR-7-5P targets multiple plant genes, including the immune-associated bZIP transcription factor 43 (OsbZIP43). Infestation of rice plants by miR-7-5P-silenced insects leads to the increased expression of OsbZIP43, while the presence of miR-7-5P counteracts this upregulation effect. Furthermore, overexpressing OsbZIP43 confers plant resistance against insects which can be subverted by miR-7-5P. Our findings suggest a mechanism by which herbivorous insects have evolved salivary miRNAs to suppress plant immunity, expanding our understanding of cross-kingdom RNA interference between interacting organisms.


Asunto(s)
Hemípteros , MicroARNs , Oryza , Animales , Interferencia de ARN , MicroARNs/genética , MicroARNs/metabolismo , Saliva , Hemípteros/fisiología , Inmunidad de la Planta/genética , Oryza/genética
3.
PLoS Pathog ; 19(3): e1011266, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36928081

RESUMEN

The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved signaling pathway that can regulate various biological processes. However, the role of JAK-STAT pathway in the persistent viral infection in insect vectors has rarely been investigated. Here, using a system that comprised two different plant viruses, Rice stripe virus (RSV) and Rice black-streaked dwarf virus (RBSDV), as well as their insect vector small brown planthopper, we elucidated the regulatory mechanism of JAK-STAT pathway in persistent viral infection. Both RSV and RBSDV infection activated the JAK-STAT pathway and promoted the accumulation of suppressor of cytokine signaling 5 (SOCS5), an E3 ubiquitin ligase regulated by the transcription factor STAT5B. Interestingly, the virus-induced SOCS5 directly interacted with the anti-apoptotic B-cell lymphoma-2 (BCL2) to accelerate the BCL2 degradation through the 26S proteasome pathway. As a result, the activation of apoptosis facilitated persistent viral infection in their vector. Furthermore, STAT5B activation promoted virus amplification, whereas STAT5B suppression inhibited apoptosis and reduced virus accumulation. In summary, our results reveal that virus-induced JAK-STAT pathway regulates apoptosis to promote viral infection, and uncover a new regulatory mechanism of the JAK-STAT pathway in the persistent plant virus transmission by arthropod vectors.


Asunto(s)
Tenuivirus , Virosis , Animales , Quinasas Janus/metabolismo , Transducción de Señal , Factores de Transcripción STAT/metabolismo , Tenuivirus/metabolismo , Insectos Vectores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
4.
Plant Physiol ; 195(1): 850-864, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38330080

RESUMEN

Plant viruses have multiple strategies to counter and evade the host's antiviral immune response. However, limited research has been conducted on the antiviral defense mechanisms commonly targeted by distinct types of plant viruses. In this study, we discovered that NUCLEAR FACTOR-YC (NF-YC) and NUCLEAR FACTOR-YA (NF-YA), 2 essential components of the NF-Y complex, were commonly targeted by viral proteins encoded by 2 different rice (Oryza sativa L.) viruses, rice stripe virus (RSV, Tenuivirus) and southern rice black streaked dwarf virus (SRBSDV, Fijivirus). In vitro and in vivo experiments showed that OsNF-YCs associate with OsNF-YAs and inhibit their transcriptional activation activity, resulting in the suppression of OsNF-YA-mediated plant susceptibility to rice viruses. Different viral proteins RSV P2 and SRBSDV SP8 directly disrupted the association of OsNF-YCs with OsNF-YAs, thereby suppressing the antiviral defense mediated by OsNF-YCs. These findings suggest an approach for conferring broad-spectrum disease resistance in rice and reveal a common mechanism employed by viral proteins to evade the host's antiviral defense by hindering the antiviral capabilities of OsNF-YCs.


Asunto(s)
Oryza , Enfermedades de las Plantas , Inmunidad de la Planta , Proteínas de Plantas , Reoviridae , Tenuivirus , Proteínas Virales , Oryza/virología , Oryza/inmunología , Oryza/genética , Enfermedades de las Plantas/virología , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/inmunología , Tenuivirus/fisiología , Tenuivirus/patogenicidad , Virus de Plantas/fisiología , Factor de Unión a CCAAT/metabolismo , Factor de Unión a CCAAT/genética , Resistencia a la Enfermedad/genética
5.
Plant Physiol ; 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38935533

RESUMEN

Emerging evidence indicates that fatty acid (FA) metabolic pathways regulate host immunity to vertebrate viruses. However, information on FA signaling in plant virus infection remains elusive. In this study, we demonstrate the importance of fatty acid desaturase (FAD), an enzyme that catalyzes the rate-limiting step in the conversion of saturated FAs into unsaturated FAs, during infection by a plant RNA virus. We previously found that the rare Kua-ubiquitin conjugating enzyme (Kua-UEV1) fusion protein FAD4 from Nicotiana benthamiana (NbFAD4) was down-regulated upon turnip mosaic virus (TuMV) infection. We now demonstrate that NbFAD4 is unstable and is degraded as TuMV infection progresses. NbFAD4 is required for TuMV replication, as it interacts with TuMV replication protein 6K2 and colocalizes with viral replication complexes. Moreover, NbFAD4 overexpression dampened the accumulation of immunity-related phytohormones and FA metabolites, and its catalytic activity appears to be crucial for TuMV infection. Finally, a yeast two-hybrid library screen identified the vacuolar H+-ATPase component ATP6V0C as involved in NbFAD4 degradation and further suppression of TuMV infection. This study reveals the intricate role of FAD4 in plant virus infection, and shed lights on a new mechanism by which a V-ATPase is involved in plant antiviral defense.

6.
BMC Genomics ; 25(1): 53, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212677

RESUMEN

BACKGROUND: Saliva plays a crucial role in shaping the feeding behavior of insects, involving processes such as food digestion and the regulation of interactions between insects and their hosts. Cyrtorhinus lividipennis serves as a predominant natural enemy of rice pests, while Apolygus lucorum, exhibiting phytozoophagous feeding behavior, is a destructive agricultural pest. In this study, a comparative transcriptome analysis, incorporating the published genomes of C.lividipennis and A.lucorum, was conducted to reveal the role of salivary secretion in host adaptation. RESULTS: In contrast to A.lucorum, C.lividipennis is a zoophytophagous insect. A de novo genome analysis of C.lividipennis yielded 19,706 unigenes, including 16,217 annotated ones. On the other hand, A.lucorum had altogether 20,111 annotated genes, as obtained from the published official gene set (20,353 unigenes). Functional analysis of the top 1,000 salivary gland (SG)-abundant genes in both insects revealed that the SG was a dynamically active tissue engaged in protein synthesis and secretion. Predictions of other tissues and signal peptides were compared. As a result, 94 and 157 salivary proteins were identified in C.lividipennis and A.lucorum, respectively, and were categorized into 68 and 81 orthogroups. Among them, 26 orthogroups were shared, potentially playing common roles in digestion and detoxification, including several venom serine proteases. Furthermore, 42 and 55 orthogroups were exclusive in C.lividipennis and A.lucorum, respectively, which were exemplified by a hyaluronidase in C.lividipennis that was associated with predation, while polygalacturonases in A.lucorum were involved in mesophyll-feeding patterns. CONCLUSIONS: Findings in this study provide a comprehensive insight into saliva secretions in C.lividipennis and A.lucorum via a transcriptome approach, reflecting the intricate connections between saliva secretions and feeding behaviors. It is found that conserved salivary secretions are involved in shaping the overlapping feeding patterns, while a plethora of unique salivary secretions may drive the evolution of specific feeding behaviors crucial for their survival. These results enhance our understanding of the feeding mechanisms in different insects from the perspective of saliva and contribute to future environmentally friendly pest control by utilizing predatory insects.


Asunto(s)
Heterópteros , Transcriptoma , Animales , Heterópteros/genética , Glándulas Salivales , Perfilación de la Expresión Génica/métodos , Saliva
7.
Mol Biol Evol ; 40(10)2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37804524

RESUMEN

Herbivorous insects such as whiteflies, planthoppers, and aphids secrete abundant orphan proteins to facilitate feeding. Yet, how these genes are recruited and evolve to mediate plant-insect interaction remains unknown. In this study, we report a horizontal gene transfer (HGT) event from fungi to an ancestor of Aleyrodidae insects approximately 42 to 190 million years ago. BtFTSP1 is a salivary protein that is secreted into host plants during Bemisia tabaci feeding. It targets a defensive ferredoxin 1 in Nicotiana tabacum (NtFD1) and disrupts the NtFD1-NtFD1 interaction in plant cytosol, leading to the degradation of NtFD1 in a ubiquitin-dependent manner. Silencing BtFTSP1 has negative effects on B. tabaci feeding while overexpressing BtFTSP1 in N. tabacum benefits insects and rescues the adverse effect caused by NtFD1 overexpression. The association between BtFTSP1 and NtFD1 is newly evolved after HGT, with the homologous FTSP in its fungal donor failing to interact and destabilize NtFD1. Our study illustrates the important roles of horizontally transferred genes in plant-insect interactions and suggests the potential origin of orphan salivary genes.


Asunto(s)
Áfidos , Hemípteros , Animales , Ferredoxinas/metabolismo , Plantas/metabolismo , Hemípteros/genética , Nicotiana/genética , Nicotiana/metabolismo , Áfidos/metabolismo , Proteínas y Péptidos Salivales/genética
8.
J Gen Virol ; 105(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602389

RESUMEN

A negative-strand symbiotic RNA virus, tentatively named Nilaparvata lugens Bunyavirus (NLBV), was identified in the brown planthopper (BPH, Nilaparvata lugens). Phylogenetic analysis indicated that NLBV is a member of the genus Mobuvirus (family Phenuiviridae, order Bunyavirales). Analysis of virus-derived small interfering RNA suggested that antiviral immunity of BPH was successfully activated by NLBV infection. Tissue-specific investigation showed that NLBV was mainly accumulated in the fat-body of BPH adults. Moreover, NLBV was detected in eggs of viruliferous female BPHs, suggesting the possibility of vertical transmission of NLBV in BPH. Additionally, no significant differences were observed for the biological properties between NLBV-infected and NLBV-free BPHs. Finally, analysis of geographic distribution indicated that NLBV may be prevalent in Southeast Asia. This study provided a comprehensive characterization on the molecular and biological properties of a symbiotic virus in BPH, which will contribute to our understanding of the increasingly discovered RNA viruses in insects.


Asunto(s)
Hemípteros , Orthobunyavirus , Virus ARN , Animales , Femenino , Filogenia , Insectos , Virus ARN/genética
9.
Plant Biotechnol J ; 22(4): 1033-1048, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37997501

RESUMEN

Plants have intricate mechanisms that tailor their defence responses to pathogens. WRKY transcription factors play a pivotal role in plant immunity by regulating various defence signalling pathways. Many WRKY genes are transcriptionally activated upon pathogen attack, but how their functions are regulated after transcription remains elusive. Here, we show that OsWRKY7 functions as a crucial positive regulator of rice basal immunity against Xanthomonas oryzae pv. oryzae (Xoo). The activity of OsWRKY7 was regulated at both translational and post-translational levels. Two translational products of OsWRKY7 were generated by alternative initiation. The full-length OsWRKY7 protein is normally degraded by the ubiquitin-proteasome system but was accumulated following elicitor or pathogen treatment, whereas the alternate product initiated from the downstream in-frame start codon was stable. Both the full and alternate OsWRKY7 proteins have transcriptional activities in yeast and rice cells, and overexpression of each form enhanced resistance to Xoo infection. Furthermore, disruption of the main AUG in rice increased the endogenous translation of the alternate stabilized form of OsWRKY7 and enhanced bacterial blight resistance. This study provides insights into the coordination of alternative translation and protein stability in the regulation of plant growth and basal defence mediated by the OsWRKY7 transcription factor, and also suggests a promising strategy to breed disease-resistant rice by translation initiation control.


Asunto(s)
Oryza , Xanthomonas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Oryza/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Fitomejoramiento , Resistencia a la Enfermedad/genética , Inmunidad de la Planta/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
10.
Plant Biotechnol J ; 22(5): 1335-1351, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38100262

RESUMEN

Thiamine (vitamin B1) biosynthesis involves key enzymes known as thiazole moieties (THI1/THI2), which have been shown to participate in plant responses to abiotic stress. However, the role of THI1/THI2 in plant immunity remains unclear. In this study, we cloned TaTHI2 from wheat and investigated its function in Chinese wheat mosaic virus (CWMV) infection. Overexpression of TaTHI2 (TaTHI2-OE) inhibited CWMV infection, while TaTHI2 silencing enhanced viral infection in wheat. Interestingly, the membrane-localized TaTHI2 protein was increased during CWMV infection. TaTHI2 also interacted with the Ca2+-dependent protein kinase 5 (TaCPK5), which is localized in the plasma membrane, and promoted reactive oxygen species (ROS) production by repressing TaCPK5-mediated activity of the catalase protein TaCAT1. CWMV CP disrupted the interaction between TaTHI2 and TaCAT1, reducing ROS accumulation and facilitating viral infection. Additionally, transgenic plants overexpressing TaTHI2 showed increased seed number per ear and 1000-kernel weight compared to control plants. Our findings reveal a novel function of TaTHI2 in plant immunity and suggest its potential as a valuable gene for balancing disease resistance and wheat yield. Furthermore, the disruption of the TaTHI2-mediated plant immune pathway by CWMV CP provides further evidence for the evolutionary arms race between plants and viruses.


Asunto(s)
Virus de Plantas , Virosis , Especies Reactivas de Oxígeno/metabolismo , Proteínas Quinasas/genética , Virus de Plantas/genética , Tiamina , Enfermedades de las Plantas
11.
PLoS Pathog ; 18(5): e1010548, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35560151

RESUMEN

NF-Y transcription factors are known to play many diverse roles in the development and physiological responses of plants but little is known about their role in plant defense. Here, we demonstrate the negative roles of rice NF-YA family genes in antiviral defense against two different plant viruses, Rice stripe virus (RSV, Tenuivirus) and Southern rice black-streaked dwarf virus (SRBSDV, Fijivirus). RSV and SRBSDV both induced the expression of OsNF-YA family genes. Overexpression of OsNF-YAs enhanced rice susceptibility to virus infection, while OsNF-YAs RNAi mutants were more resistant. Transcriptome sequencing showed that the expression of jasmonic acid (JA)-related genes was significantly decreased in plants overexpressing OsNF-YA when they were infected by viruses. qRT-PCR and JA sensitivity assays confirmed that OsNF-YAs play negative roles in regulating the JA pathway. Further experiments showed that OsNF-YAs physically interact with JA signaling transcription factors OsMYC2/3 and interfere with JA signaling by dissociating the OsMYC2/3-OsMED25 complex, which inhibits the transcriptional activation activity of OsMYC2/3. Together, our results reveal that OsNF-YAs broadly inhibit plant antiviral defense by repressing JA signaling pathways, and provide new insight into how OsNF-YAs are directly associated with the JA pathway.


Asunto(s)
Oryza , Tenuivirus , Virosis , Antivirales/metabolismo , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oryza/metabolismo , Oxilipinas , Enfermedades de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Tenuivirus/genética , Tenuivirus/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
12.
PLoS Pathog ; 18(3): e1010412, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35294497

RESUMEN

Successful pathogen infection in plant depends on a proper interaction between the invading pathogen and its host. Post-translational modification (PTM) plays critical role(s) in plant-pathogen interaction. However, how PTM of viral protein regulates plant immunity remains poorly understood. Here, we found that S162 and S165 of Chinese wheat mosaic virus (CWMV) cysteine-rich protein (CRP) are phosphorylated by SAPK7 and play key roles in CWMV infection. Furthermore, the phosphorylation-mimic mutant of CRP (CRPS162/165D) but not the non-phosphorylatable mutant of CRP (CRPS162/165A) interacts with RNA-binding protein UBP1-associated protein 2C (TaUBA2C). Silencing of TaUBA2C expression in wheat plants enhanced CWMV infection. In contrast, overexpression of TaUBA2C in wheat plants inhibited CWMV infection. TaUBA2C inhibits CWMV infection through recruiting the pre-mRNA of TaNPR1, TaPR1 and TaRBOHD to induce cell death and H2O2 production. This effect can be supressed by CRPS162/165D through changing TaUBA2C chromatin-bound status and attenuating it's the RNA- or DNA-binding activities. Taken together, our findings provide new knowledge on how CRP phosphorylation affects CWMV infection as well as the arms race between virus and wheat plants.


Asunto(s)
Enfermedades de las Plantas , Proteínas Virales , Peróxido de Hidrógeno/metabolismo , Inmunidad de la Planta , Virus de Plantas , Proteínas de Unión al ARN/genética , Triticum/genética , Proteínas Virales/metabolismo
13.
PLoS Pathog ; 18(1): e1010257, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35073383

RESUMEN

Accumulated experimental evidence has shown that viruses recruit the host intracellular machinery to establish infection. It has recently been shown that the potyvirus Turnip mosaic virus (TuMV) transits through the late endosome (LE) for viral genome replication, but it is still largely unknown how the viral replication vesicles labelled by the TuMV membrane protein 6K2 target LE. To further understand the underlying mechanism, we studied the involvement of the vacuolar sorting receptor (VSR) family proteins from Arabidopsis in this process. We now report the identification of VSR4 as a new host factor required for TuMV infection. VSR4 interacted specifically with TuMV 6K2 and was required for targeting of 6K2 to enlarged LE. Following overexpression of VSR4 or its recycling-defective mutant that accumulates in the early endosome (EE), 6K2 did not employ the conventional VSR-mediated EE to LE pathway, but targeted enlarged LE directly from cis-Golgi and viral replication was enhanced. In addition, VSR4 can be N-glycosylated and this is required for its stability and for monitoring 6K2 trafficking to enlarged LE. A non-glycosylated VSR4 mutant enhanced the dissociation of 6K2 from cis-Golgi, leading to the formation of punctate bodies that targeted enlarged LE and to more robust viral replication than with glycosylated VSR4. Finally, TuMV hijacks N-glycosylated VSR4 and protects VSR4 from degradation via the autophagy pathway to assist infection. Taken together, our results have identified a host factor VSR4 required for viral replication vesicles to target endosomes for optimal viral infection and shed new light on the role of N-glycosylation of a host factor in regulating viral infection.


Asunto(s)
Endosomas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Potyvirus/patogenicidad , Proteínas de Transporte Vesicular/metabolismo , Compartimentos de Replicación Viral/metabolismo , Humanos , Enfermedades de las Plantas/microbiología , Replicación Viral/fisiología
14.
Opt Express ; 32(5): 7848-7864, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38439455

RESUMEN

On-chip switchable optical true-time delay lines (OTTDLs) feature a large group delay tuning range but suffer from a discrete tuning step. OTTDLs with a large delay tuning range and a continuous tuning capability are highly desired. In this paper, we propose and experimentally demonstrate a silicon-based broadband continuously tunable OTTDL comprising a 7-bit delay line and a switch-based continuously tunable delay line. The group delay of the entire OTTDL can be continuously tuned from 0 to 1020.16 ps. A delay error within -1.27 ps to 1.75 ps, and a delay fluctuation of less than 2.69 ps in the frequency range of 2∼25 GHz are obtained. We analyze the causes of the delay fluctuation and its influence on beamforming. Moreover, we also propose a simplified non-invasive calibration method that can significantly reduce the complexity of the delay state calibration and can be easily extended to delay lines with more stages of optical switches. The high performance of our OTTDL chip and the calibration method drive practical applications of integrated OTTDLs.

15.
Opt Lett ; 49(10): 2761-2764, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38748155

RESUMEN

We report on the realization of a unidirectional transmission-based bidirectional erbium-doped fiber amplifier (UTB-EDFA) for the coherent optical fiber links. By applying an optical phase-locked loop (OPLL) between the two unidirectional EDFA (Ui-EDFA) paths, the annoying uncorrelated phase noise between the two paths can be largely suppressed. Promisingly, we can independently optimize the gains of the UTB-EDFAs for bidirectional transmissions, resulting in higher net gain acquired compared with the conventional single-path bidirectional EDFA (SPBA)-based ones. We demonstrate that the fractional frequency instability of the UTB-EDFA-based scheme can be decreased by 26.3% over the most asymmetrical 100 km two-way optical frequency comparison (TWC) system compared with the SPBA-based ones and, more importantly, can acquire higher net gain for unevenly distributed sub-links over ultra-long fiber links, such as 1000 km, by independently optimizing the gains. This technique paves the way for the applications of large-scale fiber networks.

16.
Opt Lett ; 49(4): 875-878, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38359205

RESUMEN

We proposed a joint time and frequency transfer scheme over a single International Telecommunication Union 100 GHz wavelength division multiplexing (WDM) channel using a normal commercial WDM device and commercial offset WDM device. A standard 100 GHz WDM channel is divided into three sub-channels with a frequency interval of more than 20 GHz for a time and frequency transfer, which could help to avoid the interference among time, frequency, and data signals in other WDM channels. A joint high-precision time and frequency transfer is, therefore, able to be performed with data transmission over WDM optical communication links without extra requirements on devices. A joint time and frequency transfer in a single 100 GHz WDM channel is experimentally demonstrated over a 60 km fiber link with the communication data transmission in the adjacent channels. The stability of the time transfer can be better than 15 ps at 1 s, and the stability of the frequency transfer can be better than 2.7×10-14 at 1 s, while the bit error rates of the adjacent channels are at the same level as the separate transmission.

17.
Opt Lett ; 49(11): 3018-3021, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824317

RESUMEN

We demonstrate a monolithic tunable dual-wavelength laser fabricated on erbium-doped lithium niobate on an insulator (Er:LNOI). The dual-wavelength laser enables independent tuning with a continuously linear electro-optic (EO)-modulated tuning range of 11.875 GHz at a tuning efficiency of 0.63 pm/V. Tunable microwave generation within 50 GHz with a maximum extinction ratio of 35 dB is experimentally demonstrated by further exploring the charge accumulation effect in LNOI. The monolithic design of this work paves the way for microscale integration of laser devices, presenting significant prospects in photonics research and applications.

18.
Arch Virol ; 169(1): 19, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38180588

RESUMEN

The complete genomic sequence of a novel robigovirus, provisionally named "Mentha arvensis robigovirus 1" (MARV1), was determined by combining next-generation sequencing (NGS), reverse transcription polymerase chain reaction (RT-PCR), and rapid amplification of cDNA ends (RACE) PCR. The complete genomic sequence of this new virus is 7617 nucleotides in length, excluding the 3' poly(A) tail. The MARV1 genome encodes a putative replicase, "triple gene block" proteins, and a coat protein. Phylogenetic analysis demonstrated that MARV1 is a member of the genus Robigovirus, with closest relationships to African oil palm ringspot virus (AOPRV). Furthermore, MARV1-derived small interfering RNAs (siRNAs) showed typical patterns of plant-virus-derived siRNAs produced by the host antiviral RNA interference pathway. This is the first report of a plant virus of the genus Robigovirus in M. arvensis.


Asunto(s)
Flexiviridae , Mentha , Filogenia , Genómica , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Mensajero , ARN Interferente Pequeño/genética
19.
Arch Virol ; 169(5): 90, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578314

RESUMEN

Trees and shrubs provide important ecological services. However, few studies have surveyed the virome in trees and shrubs. In this study, we discovered a new positive-sense RNA virus originating from Viburnum odoratissimum, which we named "Vo narna-like virus". The complete genome of Vo narna-like virus is 3,451 nt in length with an open reading frame (ORF) encoding the RNA-dependent RNA polymerase (RdRP) protein. Phylogenetic analysis placed this virus within the betanarnavirus clade, sharing 53.63% amino acid sequence identity with its closest relative, Qingdao RNA virus 2. The complete sequence of the virus was confirmed by rapid amplification of cDNA ends (RACE) and Sanger sequencing. Small interfering RNA (siRNA) analysis indicated that this virus interacts with the RNA interference (RNAi) pathway of V. odoratissimum. This is the first report of a narnavirus in V. odoratissimum.


Asunto(s)
Virus ARN , Viburnum , Viburnum/genética , ARN Viral/genética , Filogenia , Genoma Viral , Virus ARN/genética , Sistemas de Lectura Abierta
20.
Arch Virol ; 169(7): 141, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38850364

RESUMEN

The brown planthopper (BPH), Nilaparvata lugens, is a significant agricultural pest capable of long-distance migration and transmission of viruses that cause severe disease in rice. In this study, we identified a novel segmented RNA virus in a BPH, and this virus exhibited a close relationship to members of a recently discovered virus lineage known as "quenyaviruses" within the viral kingdom Orthornavirae. This newly identified virus was named "Nilaparvata lugens quenyavirus 1" (NLQV1). NLQV1 consists of five positive-sense, single-stranded RNAs, with each segment containing a single open reading frame (ORF). The genomic characteristics and phylogenetic analysis support the classification of NLQV1 as a novel quenyavirus. Notably, all of the genome segments of NLRV contained the 5'-terminal sequence AUCUG. The characteristic virus-derived small interfering RNA (vsiRNA) profile of NLQV1 suggests that the antiviral RNAi pathway of the host BPH was activated in response to virus infection. These findings represent the first documented report of quenyaviruses in planthoppers, contributing to our understanding of quenyaviruses and expanding our knowledge of insect-specific viruses in planthoppers.


Asunto(s)
Genoma Viral , Hemípteros , Sistemas de Lectura Abierta , Filogenia , Virus ARN , ARN Viral , Animales , Hemípteros/virología , Genoma Viral/genética , ARN Viral/genética , Virus ARN/genética , Virus ARN/clasificación , Virus ARN/aislamiento & purificación , Enfermedades de las Plantas/virología , Oryza/virología , Secuenciación Completa del Genoma , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA