RESUMEN
Aberrant RNA splicing in keratinocytes drives inflammatory skin disorders. In the present study, we found that the RNA helicase DDX5 was downregulated in keratinocytes from the inflammatory skin lesions in patients with atopic dermatitis and psoriasis, and that mice with keratinocyte-specific deletion of Ddx5 (Ddx5∆KC) were more susceptible to cutaneous inflammation. Inhibition of DDX5 expression in keratinocytes was induced by the cytokine interleukin (IL)-17D through activation of the CD93-p38 MAPK-AKT-SMAD2/3 signaling pathway and led to pre-messenger RNA splicing events that favored the production of membrane-bound, intact IL-36 receptor (IL-36R) at the expense of soluble IL-36R (sIL-36R) and to the selective amplification of IL-36R-mediated inflammatory responses and cutaneous inflammation. Restoration of sIL-36R in Ddx5∆KC mice with experimental atopic dermatitis or psoriasis suppressed skin inflammation and alleviated the disease phenotypes. These findings indicate that IL-17D modulation of DDX5 expression controls inflammation in keratinocytes during inflammatory skin diseases.
Asunto(s)
Dermatitis Atópica , Interleucina-27 , Psoriasis , Ratones , Animales , Interleucina-27/metabolismo , Dermatitis Atópica/genética , Dermatitis Atópica/patología , Queratinocitos/metabolismo , Piel/patología , Psoriasis/genética , Psoriasis/patología , Inflamación/metabolismoRESUMEN
The proper regulation of transcription is essential for maintaining genome integrity and executing other downstream cellular functions1,2. Here we identify a stable association between the genome-stability regulator sensor of single-stranded DNA (SOSS)3 and the transcription regulator Integrator-PP2A (INTAC)4-6. Through SSB1-mediated recognition of single-stranded DNA, SOSS-INTAC stimulates promoter-proximal termination of transcription and attenuates R-loops associated with paused RNA polymerase II to prevent R-loop-induced genome instability. SOSS-INTAC-dependent attenuation of R-loops is enhanced by the ability of SSB1 to form liquid-like condensates. Deletion of NABP2 (encoding SSB1) or introduction of cancer-associated mutations into its intrinsically disordered region leads to a pervasive accumulation of R-loops, highlighting a genome surveillance function of SOSS-INTAC that enables timely termination of transcription at promoters to constrain R-loop accumulation and ensure genome stability.
Asunto(s)
Inestabilidad Genómica , Regiones Promotoras Genéticas , Estructuras R-Loop , Terminación de la Transcripción Genética , Humanos , ADN de Cadena Simple/metabolismo , Inestabilidad Genómica/genética , Mutación , Estructuras R-Loop/genética , ARN Polimerasa II/metabolismo , Regiones Promotoras Genéticas/genética , Genoma Humano , Proteínas de Unión al ADN/metabolismoRESUMEN
Organ morphogenesis needs orchestration of a series of cellular events, including cell division, cell shape change, cell rearrangement and cell death. Cytokinesis, the final step of cell division, is involved in the control of organ size, shape and function. Mechanistically, it is unclear how the molecules involved in cytokinesis regulate organ size and shape. Here, we demonstrate that the centralspindlin complex coordinates cell division and epithelial morphogenesis by regulating cytokinesis. Loss of the centralspindlin components CYK-4 and ZEN-4 disrupts cell division, resulting in altered cell arrangement and malformation of the Caenorhabditis elegans spermatheca. Further investigation revealed that most spermathecal cells undergo nuclear division without completion of cytokinesis. Germline mutant-based analyses suggest that CYK-4 regulates cytokinesis of spermathecal cells in a GTPase activator activity-independent manner. Spermathecal morphology defects can be enhanced by double knockdown of rho-1 and cyk-4, and partially suppressed by double knockdown of cdc-42 and cyk-4. Thus, the centralspindlin components CYK-4 and ZEN-4, together with RHO-1 and CDC-42, are central players of a signaling network that guides spermathecal morphogenesis by enabling completion of cytokinesis.
Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animales , Caenorhabditis elegans/metabolismo , Citocinesis/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Cinesinas/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Morfogénesis/genética , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismoRESUMEN
Reactive oxygen species (ROS) are unstable reactive molecules that are toxic to cells. Regulation of ROS homeostasis is crucial to protect cells from dysfunction, senescence, and death. In plant leaves, ROS are mainly generated from chloroplasts and are tightly temporally restricted by the circadian clock. However, little is known about how ROS homeostasis is regulated in nonphotosynthetic organs, such as petals. Here, we showed that hydrogen peroxide (H2O2) levels exhibit typical circadian rhythmicity in rose (Rosa hybrida) petals, consistent with the measured respiratory rate. RNA-seq and functional screening identified a B-box gene, RhBBX28, whose expression was associated with H2O2 rhythms. Silencing RhBBX28 accelerated flower senescence and promoted H2O2 accumulation at night in petals, while overexpression of RhBBX28 had the opposite effects. RhBBX28 influenced the expression of various genes related to respiratory metabolism, including the TCA cycle and glycolysis, and directly repressed the expression of SUCCINATE DEHYDROGENASE 1, which plays a central role in mitochondrial ROS (mtROS) homeostasis. We also found that PHYTOCHROME-INTERACTING FACTOR8 (RhPIF8) could activate RhBBX28 expression to control H2O2 levels in petals and thus flower senescence. Our results indicate that the circadian-controlled RhPIF8-RhBBX28 module is a critical player that controls flower senescence by governing mtROS homeostasis in rose.
Asunto(s)
Flores/fisiología , Mitocondrias/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rosa/fisiología , Ritmo Circadiano/fisiología , Regulación de la Expresión Génica de las Plantas , Homeostasis , Peróxido de Hidrógeno/metabolismo , Mitocondrias/genética , Proteínas de Plantas/genética , Senescencia de la Planta , Plantas Modificadas Genéticamente , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismoRESUMEN
OBJECTIVE: The aim of this study is to investigate the risk factors for lateral cervical lymph node metastasis in papillary thyroid carcinoma (PTC). METHODS: Clinicopathological data (age, gender, Hashimoto's thyroiditis, preoperative circulating tumor cells (CTCs), multifocal, maximum lesion diameter, invaded capsule, T stage, and lymph node metastasis) of 830 PTC patients diagnosed and treated in Meizhou People's Hospital from June 2021 to April 2023 were collected. The related factors of lateral cervical lymph node metastasis were analyzed. RESULTS: There were 334 (40.2%), and 103 (12.4%) PTC patients with central lymph node metastasis, and lateral cervical lymph node metastasis, respectively. Compared with patients without lateral cervical lymph node metastasis, PTC patients with lateral cervical lymph node metastasis had a higher proportion of multifocal, maximum lesion diameter > 1 cm, invaded capsule, T3-T4 stage. Regression logistic analysis showed that male (odds ratio (OR): 2.196, 95% confidence interval (CI): 1.279-3.769, p = 0.004), age < 55 years old (OR: 2.057, 95% CI: 1.062-3.988, p = 0.033), multifocal (OR: 2.759, 95% CI: 1.708-4.458, p < 0.001), maximum lesion diameter > 1 cm (OR: 5.408, 95% CI: 3.233-9.046, p < 0.001), T3-T4 stage (OR: 2.396, 95% CI: 1.241-4.626, p = 0.009), and invaded capsule (OR: 2.051, 95% CI: 1.208-3.480, p = 0.008) were associated with lateral cervical lymph node metastasis. CONCLUSIONS: Male, age < 55 years old, multifocal, maximum lesion diameter > 1 cm, T3-T4 stage, and invaded capsule were independent risk factors for lateral cervical lymph node metastasis in PTC.
Asunto(s)
Metástasis Linfática , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Riesgo , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/cirugía , Neoplasias de la Tiroides/patología , Neoplasias de la Tiroides/cirugía , Adulto , Pronóstico , Estudios de Seguimiento , Ganglios Linfáticos/patología , Ganglios Linfáticos/cirugía , Cuello/patología , Anciano , Tiroidectomía , Estadificación de Neoplasias , Adulto JovenRESUMEN
This study aimed to compare and rank the effectiveness of optimal exercise intensity in improving executive function in patients with ADHD (Attention deficit hyperactivity disorder, ADHD) through a comprehensive comparison of direct and indirect evidence. A systematic search was performed in five electronic databases to explore the optimal exercise intensity for improving executive function in patients with ADHD by directly and indirectly comparing a variety of exercise intervention intensities. In addition, the isolated effects of exercise on improving executive function in patients with ADHD were explored through classical meta-analysis of paired direct comparisons. Twenty-nine studies were retrieved and included in this study. Classical paired meta-analysis showed that for the patients with ADHD in the age group of 7-17 years, statistical difference was observed for all the parameters of exercise interventions (intensity, frequency, period, and training method), the three dimensions of executive function, the use of medication or not, the high and low quality of the methodological approach. Network meta-analysis showed that high-intensity exercise training was optimal for improving working memory (97.4%) and inhibitory function (85.7%) in patients with ADHD. Meanwhile, moderate-intensity exercise training was optimal for improving cognitive flexibility (77.3%) in patients with ADHD. Moderate to high intensity exercise training shows potential for improving executive function in these patients. Therefore, we recommend applying high-intensity exercise intervention to improve executive function in patients with ADHD to achieve substantial improvement.
RESUMEN
Homeostasis of intestinal stem cells (ISCs) is maintained by the orchestration of niche factors and intrinsic signaling networks. Here, we have found that deletion of Erk1 and Erk2 (Erk1/2) in intestinal epithelial cells at embryonic stages resulted in an unexpected increase in cell proliferation and migration, expansion of ISCs, and formation of polyp-like structures, leading to postnatal death. Deficiency of epithelial Erk1/2 results in defects in secretory cell differentiation as well as impaired mesenchymal cell proliferation and maturation. Deletion of Erk1/2 strongly activated Wnt signaling through both cell-autonomous and non-autonomous mechanisms. In epithelial cells, Erk1/2 depletion resulted in loss of feedback regulation, leading to Ras/Raf cascade activation that transactivated Akt activity to stimulate the mTor and Wnt/ß-catenin pathways. Moreover, Erk1/2 deficiency reduced the levels of Indian hedgehog and the expression of downstream pathway components, including mesenchymal Bmp4 - a Wnt suppressor in intestines. Inhibition of mTor signaling by rapamycin partially rescued Erk1/2 depletion-induced intestinal defects and significantly prolonged the lifespan of mutant mice. These data demonstrate that Erk/Mapk signaling functions as a key modulator of Wnt signaling through coordination of epithelial-mesenchymal interactions during intestinal development.
Asunto(s)
Intestinos/embriología , Sistema de Señalización de MAP Quinasas , Vía de Señalización Wnt , Animales , Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Ratones , Ratones Noqueados , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Quinasas raf/genética , Quinasas raf/metabolismoRESUMEN
Recent studies demonstrate that histones are subjected to a series of short-chain fatty acid modifications that is known as histone acylations. However, the enzymes responsible for histone acylations in vivo are not well characterized. Here, we report that HBO1 is a versatile histone acyltransferase that catalyzes not only histone acetylation but also propionylation, butyrylation and crotonylation both in vivo and in vitro and does so in a JADE or BRPF family scaffold protein-dependent manner. We show that the minimal HBO1/BRPF2 complex can accommodate acetyl-CoA, propionyl-CoA, butyryl-CoA and crotonyl-CoA. Comparison of CBP and HBO1 reveals that they catalyze histone acylations at overlapping as well as distinct sites, with HBO1 being the key enzyme for H3K14 acylations. Genome-wide chromatin immunoprecipitation assay demonstrates that HBO1 is highly enriched at and contributes to bulk histone acylations on the transcriptional start sites of active transcribed genes. HBO1 promoter intensity highly correlates with the level of promoter histone acylation, but has no significant correlation with level of transcription. We also show that HBO1 is associated with a subset of DNA replication origins. Collectively our study establishes HBO1 as a versatile histone acyltransferase that links histone acylations to promoter acylations and selection of DNA replication origins.
Asunto(s)
Cromatina/genética , Histona Acetiltransferasas/genética , Histonas/genética , Acetilcoenzima A/genética , Acilcoenzima A/genética , Acilación/genética , Replicación del ADN/genética , Proteínas de Homeodominio/genética , Humanos , Regiones Promotoras Genéticas/genética , Procesamiento Proteico-Postraduccional/genética , Origen de Réplica/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
By fusing several environment-sensitive fluorophores to the pharmacophore mirabegron, a series of new fluorescent ligands for ß-adrenergic receptors (ß-ARs) were produced with a turn-on mechanism and high binding affinity to ß-ARs efficiently. Compound L5 with the pyridinium moiety possessed the most favorable combination of properties after systematic comparison and optimization, including high affinity and acceptable cytotoxicity, remarkable fluorescence enhancement (up to 30-fold) upon binding with ß-ARs, and feasible visualizing ability of ß-ARs in living cells under no-wash conditions. Furthermore, a NanoLuc-based bioluminescence resonance energy transfer (NanoBRET) binding assay based on compound L5 was developed and may be used in high-throughput screening (HTS) in the drug discovery of ß-ARs due to its unique fluorescence spectroscopic features. Overall, as the first environment-sensitive fluorescent ligand, molecule L5 could be a useful tool for understanding the pharmacology of ß-ARs.
Asunto(s)
Receptores Adrenérgicos beta , Transferencia de Energía , Ligandos , Luciferasas/metabolismoRESUMEN
The MIR2118 family has undergone tremendous expansion in the grass lineage, in which the miRNA targets numerous noncoding PHAS loci to produce 21-nt phased small interfering RNAs (phasiRNAs) involved in male fertility. However, the evolutionary trajectory of the grass MIR2118 genes and the functions of phasiRNAs have not yet been fully elucidated. We conducted comparative genomic, molecular evolution, expression and parallel analysis of RNA ends (PARE) analyses of MIR2118 and the miR2118-mediated regulatory pathway in grasses, focusing on Oryza sativa. In total, 617 MIR2118 and eight MIR1859 novel members were identified. Phylogenetic analyses showed that grass MIR2118 genes form a distinct clade from the MIR482/2118 genes of nongrass species. We reconstructed hypothetical evolutionary histories of the grass MIR2118 clusters and its MIR1859 variants, and examined the polycistronic composition and the differential expression of the osa-MIR2118 clusters. PARE data showed that osa-miR2118 might also direct the cleavage of some protein-coding gene transcripts. Importantly, we found that PARE analysis is inherently prone to false-positive target predictions when a large number of small RNAs, such as phasiRNAs, are analysed. Our results revealed the evolution and diversification of the MIR2118 family, and provide new insights into the functions of phasiRNAs in the grasses.
Asunto(s)
MicroARNs , Oryza , Regulación de la Expresión Génica de las Plantas , Genómica , MicroARNs/genética , Oryza/genética , Oryza/metabolismo , Filogenia , Poaceae/genética , Poaceae/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/genéticaRESUMEN
The phytohormone auxin plays a pivotal role in floral meristem initiation and gynoecium development, but whether and how auxin controls floral organ identity remain largely unknown. Here, we found that auxin levels influence organ specification, and changes in auxin levels influence homeotic transformation between petals and stamens in rose (Rosa hybrida). The PIN-FORMED-LIKES (PILS) gene RhPILS1 governs auxin levels in floral buds during floral organogenesis. RhAUXIN RESPONSE FACTOR 18 (RhARF18), whose expression decreases with increasing auxin content, encodes a transcriptional repressor of the C-class gene RhAGAMOUS (RhAG), and controls stamen-petal organ specification in an auxin-dependent manner. Moreover, RhARF18 physically interacts with the histone deacetylase (HDA) RhHDA6. Silencing of RhHDA6 increases H3K9/K14 acetylation levels at the site adjacent to the RhARF18-binding site in the RhAG promoter and reduces petal number, indicating that RhARF18 might recruit RhHDA6 to the RhAG promoter to reinforce the repression of RhAG transcription. We propose a model for how auxin homeostasis controls floral organ identity via regulating transcription of RhAG.
Asunto(s)
Histona Desacetilasa 6/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Rosa/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Histona Desacetilasa 6/genética , Homeostasis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Rosa/crecimiento & desarrollo , Rosa/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
Flexible inorganic GaN-based microscale light-emitting diodes (µLEDs) show potential applications in wearable electronics, biomedical engineering, and human-machine interfaces. However, developing cost-effective products remains a challenge for flexible GaN-based µLEDs. Here, a facile and stable method is proposed to fabricate flexible GaN-based µLEDs from silicon substrates in an array-scale manner by wet etching. Circular and square µLED arrays with a size and pitch of 500â µm were fabricated and then transferred to a flexible acrylic/copper substrate. The as-fabricated flexible µLEDs can maintain their structure intact while exhibiting a significant increase in external quantum efficiency. This Letter promotes the application of simple and low-cost flexible µLED devices, especially for virtual displays, wearables, and curvilinear displays.
RESUMEN
Aberrant DNA methylation plays an important role in cancer progression. However, no resource has been available that comprehensively provides DNA methylation-based diagnostic and prognostic models, expression-methylation quantitative trait loci (emQTL), pathway activity-methylation quantitative trait loci (pathway-meQTL), differentially variable and differentially methylated CpGs, and survival analysis, as well as functional epigenetic modules for different cancers. These provide valuable information for researchers to explore DNA methylation profiles from different aspects in cancer. To this end, we constructed a user-friendly database named DNA Methylation Interactive Visualization Database (DNMIVD), which comprehensively provides the following important resources: (i) diagnostic and prognostic models based on DNA methylation for multiple cancer types of The Cancer Genome Atlas (TCGA); (ii) meQTL, emQTL and pathway-meQTL for diverse cancers; (iii) Functional Epigenetic Modules (FEM) constructed from Protein-Protein Interactions (PPI) and Co-Occurrence and Mutual Exclusive (COME) network by integrating DNA methylation and gene expression data of TCGA cancers; (iv) differentially variable and differentially methylated CpGs and differentially methylated genes as well as related enhancer information; (v) correlations between methylation of gene promoter and corresponding gene expression and (vi) patient survival-associated CpGs and genes with different endpoints. DNMIVD is freely available at http://www.unimd.org/dnmivd/. We believe that DNMIVD can facilitate research of diverse cancers.
Asunto(s)
Metilación de ADN/genética , Bases de Datos de Ácidos Nucleicos , Regulación Neoplásica de la Expresión Génica/genética , Neoplasias , Sitios de Carácter Cuantitativo/genética , Epigénesis Genética , Epigenómica , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , PronósticoRESUMEN
AlGaN/GaN heterojunction-based high-electron-mobility transistors (HEMTs) have significant advantages of high carrier concentration, high electron mobility, and large breakdown voltage, and show promising potential as power devices. Being widely used in semiconductor manufacturing, dry etching process is capable of fabricating microstructures and thinning substrate from backside, which is good for developing flexible devices. Here, we investigate the effect of backside dry etching of Si substrate on the physical and electrical properties of AlGaN/GaN HEMTs. The physical properties were characterized by scanning electron microscope, Raman spectra, and x-ray diffraction (XRD). After the dry etching process, the peak red-shift of GaNE2mode indicates an increase of tensile stress, and the XRD rocking curve of GaN film shows to a certain extent decreased dislocation density. Furthermore, the maximum saturation current density and maximum transconductance of the HEMTs are improved by 21.1% and 25.5%, respectively. The approach of backside dry etching for thinning Si substrate would contribute to the optimization of GaN heterojunction-based devices, and also provide inspirations for the development of flexible and robust power devices.
RESUMEN
Artemisia annua is well known for biosynthesizing the antimalarial drug artemisinin. Here, a global proteomic profiling of A. annua is conducted with identification of a total of 13 403 proteins based on the genome sequence annotation database. Furthermore, a spectral library is generated to perform quantitative proteomic analysis using data independent acquisition mass spectrometry. Specifically, proteins between two chemotypes that produce high (HAP) and low (LAP) artemisinin content, respectively, are comprehensively quantified and compared. 182 proteins are identified with abundance significantly different between these two chemotypes means after the statistic use the p-value and fold change it is found 182 proteins can reach the demand conditions which represent the expression are significantly different between the high artemisnin content plants (HAPs) and the low artemisnin content plants (LAPs). Data are available via ProteomeXchange with identifier PXD015547. Overall, this current study globally identifies the proteome of A. annua and quantitatively compares the targeted sub-proteomes between the two cultivars of HAP and LAP, providing systematic information on metabolic pathways of A. annua.
Asunto(s)
Artemisia annua/genética , Artemisininas/metabolismo , Proteoma/genética , Proteómica , Artemisia annua/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Espectrometría de MasasRESUMEN
Wnt signaling is essential for the maintenance of adult stem cells and its aberrant activation is a stimulator of carcinogenesis. The transmembrane protein, Wntless, is an essential Wnt signaling component through regulating the secretion of Wnt ligands. Here, we generated a mouse model with specific Wntless knockout in intestinal epithelium to study its function in the intestinal epithelium. Wntless knockout exhibits no obvious defects in mice but significantly disrupted proliferation and differentiation of small intestinal organoids. We also discovered that these deficiencies could be partially rescued by Wnt3a supplement but not Wnt9b. To further investigate the role of Wntless in tumorigenesis, APC-deficient spontaneous intestinal tumors and chemical induced colorectal cancer mouse models were employed. To our surprise, intestinal epithelium-specific knockout of Wntless did not cause significant differences in tumor number and size. In summary, our data demonstrated that epithelial Wntless was required for the growth and differentiation of small intestinal organoids but not in live animals, suggesting the other tissues, such as mesenchymal tissue, play critical role for Wnt secretion in both intestinal homeostasis as well as tumorigenesis.
Asunto(s)
Transformación Celular Neoplásica/genética , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Neoplasias Intestinales/genética , Receptores Acoplados a Proteínas G/genética , Animales , Diferenciación Celular/genética , Proliferación Celular/genética , Transformación Celular Neoplásica/metabolismo , Neoplasias Intestinales/metabolismo , Ratones Noqueados , Ratones Transgénicos , Organoides/metabolismo , Organoides/patología , Receptores Acoplados a Proteínas G/metabolismoRESUMEN
The current study was to investigate the quantity and quality of researches in the field of ankylosing spondylitis, and to reveal the characteristics of worldwide productivity on this disease. This was a bibliometric study on ankylosing spondylitis using Web of Science. The numbers of papers, citations, research output normalized by population and gross domestic product, and the main active countries were analyzed. A total number of 7239 papers were published between 2008 and 2017. The yearly number of papers published during this period showed a significant increase (p < 0.001). North America, West Europe and East Asia were the main regions for AS papers. High-income countries contributed the greatest proportion of papers (70.49%). The research productivity from middle- and low-income countries was low (29.45%; 0.06%). The United States was the country with the greatest contributions between 2008 and 2017 (12.47%), followed by China (12.17%), Turkey (8.34%), Germany (7.82%), and the United Kingdom (5.97%). Significantly positive correlations were proved between the number of papers and population/gross domestic product (p < 0.05). From 2013, the number of AS publications by the authors from China exceeded those from the United States. However, China had far less total citations (7219 vs. 22,043) and average citations (8.19 vs. 24.41) than the United States. Denmark had the greatest productivity when normalized by population, followed by Norway, and Netherlands. When normalized by gross domestic product, Denmark led the top list, followed by Netherlands, and Greece. Papers from Australia showed the highest average citation (32.64), followed by Netherlands (31.63), and Germany (26.88). The current study showed a noticeable growth in global research output on ankylosing spondylitis between 2008 and 2017. High-income countries especially the United States had the greatest contributions. The contributions from middle- and low-income countries were considerably small. The number of papers published by countries was positively associated with their population and gross domestic product. Although China had exceeded the United States in the quantity of yearly AS publications, the quality of papers from China was lower compared to the United States. European countries may have better performance relative to their population and economic size.
Asunto(s)
Bibliometría , Investigación Biomédica , Espondilitis Anquilosante , Europa (Continente) , Asia Oriental , Producto Interno Bruto , Humanos , América del NorteRESUMEN
Multitarget inhibitors design has generated great interest in cancer treatment. Based on the synergistic effects of topoisomerase and histone deacetylase inhibitors, we designed and synthesized a new series of acridine hydroxamic acid derivatives as potential novel dual Topo and HDAC inhibitors. MTT assays indicated that all the hybrid compounds displayed good antiproliferative activities with IC50 values in low micromolar range, among which compound 8c displayed potent activity against U937 (IC50â¯=â¯0.90⯵M). In addition, compound 8c also displayed the best HDAC inhibitory activity, which was several times more potent than HDAC inhibitor SAHA. Subsequent studies indicated that all the compounds displayed Topo II inhibition activity at 50⯵M. Moreover, compound 8c could interact with DNA and induce U937 apoptosis. This study provides a suite of compounds for further exploration of dual Topo and HDAC inhibitors, and compound 8c can be a new dual Topo and HDAC inhibitory anticancer agent.
Asunto(s)
Acridinas/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Inhibidores de Topoisomerasa/farmacología , Acridinas/síntesis química , Acridinas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/síntesis química , Ácidos Hidroxámicos/química , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Inhibidores de Topoisomerasa/síntesis química , Inhibidores de Topoisomerasa/química , Células U937RESUMEN
UHRF1 is best known for its positive role in the maintenance of DNMT1-mediated DNA methylation and is implicated in a variety of tumor processes. In this paper, we provided evidence to demonstrate a role of UHRF2 in cell motility and invasion through the regulation of the epithelial-mesenchymal transition (EMT) process by acting as a transcriptional co-regulator of the EMT-transcription factors (TFs). We ectopically expressed UHRF2 in gastric cancer cell lines and performed multidimensional proteomics analyses. Proteome profiling analysis suggested a role of UHRF2 in repression of cell-cell adhesion; analysis of proteome-wide TF DNA binding activities revealed the up-regulation of many EMT-TFs in UHRF2-overexpressing cells. These data suggest that UHRF2 is a regulator of cell motility and the EMT program. Indeed, cell invasion experiments demonstrated that silencing of UHRF2 in aggressive cells impaired their abilities of migration and invasion in vitro Further ChIP-seq identified UHRF2 genomic binding motifs that coincide with several TF binding motifs including EMT-TFs, and the binding of UHRF2 to CDH1 promoter was validated by ChIP-qPCR. Moreover, the interactome analysis with IP-MS uncovered the interaction of UHRF2 with TFs including TCF7L2 and several protein complexes that regulate chromatin remodeling and histone modifications, suggesting that UHRF2 is a transcription co-regulator for TFs such as TCF7L2 to regulate the EMT process. Taken together, our study identified a role of UHRF2 in EMT and tumor metastasis and demonstrated an effective approach to obtain clues of UHRF2 function without prior knowledge through combining evidence from multidimensional proteomics analyses.
Asunto(s)
Transición Epitelial-Mesenquimal , Proteómica/métodos , Neoplasias Gástricas/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Antígenos CD , Sitios de Unión , Cadherinas/genética , Cadherinas/metabolismo , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Regiones Promotoras Genéticas , Proteína 2 Similar al Factor de Transcripción 7/genética , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Factores de Transcripción/genética , Ubiquitina-Proteína Ligasas/química , Regulación hacia ArribaRESUMEN
BACKGROUND: Flower opening is an important process in the life cycle of flowering plants and is influenced by various endogenous and environmental factors. Our previous work demonstrated that rose (Rosa hybrida) flowers are highly sensitive to dehydration during flower opening and the water recovery process after dehydration induced ethylene production rapidly in flower gynoecia. In addition, this temporal- and spatial-specific ethylene production is attributed to a transient but robust activation of the rose MAP KINASE6-ACC SYNTHASE1 (RhMPK6-RhACS1) cascade in gynoecia. However, the upstream component of RhMPK6-RhACS1 is unknown, although RhMKK9 (MAP KINASE KINASE9), a rose homologue of Arabidopsis MKK9, could activate RhMPK6 in vitro. In this study, we monitored RhMKK2/4/5/9 expression, the potential upstream kinase to RhMPK6, in rose gynoecia during dehydration and rehydration. RESULTS: We found only RhMKK9 was rapidly and strongly induced by rehydration. Silencing of RhMKK9 significantly decreased rehydration-triggered ethylene production. Consistently, the expression of several ethylene-responsive genes was down regulated in the petals of RhMKK9-silenced flowers. Moreover, we detected the DNA methylation level in the promoter and gene body of RhMKK9 by Chop-PCR. The results showed that rehydration specifically elevated the DNA methylation level on the RhMKK9 gene body, whereas it resulted in hypomethylation in its promoter. CONCLUSIONS: Our results showed that RhMKK9 possibly acts as the upstream component of the RhMKK9-RhMPK6-RhACS1 cascade and is responsible for water recovery-triggered ethylene production in rose gynoecia, and epigenetic DNA methylation is involved in the regulation of RhMKK9 expression by rehydration.