Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Am Chem Soc ; 146(18): 12556-12564, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38660792

RESUMEN

Transition metal nitride (TMN)-based nanostructures have emerged as promising materials for diverse applications in electronics, photonics, energy storage, and catalysis due to their highly desirable physicochemical properties. However, synthesizing TMN-based nanostructures with designed compositions and morphologies poses challenges, especially in the solution phase. The cation exchange reaction (CER) stands out as a versatile postsynthetic strategy for preparing nanostructures that are otherwise inaccessible through direct synthesis. Nevertheless, exploration of the CER in TMNs lags behind that in metal chalcogenides and metal phosphides. Here, we demonstrate cation exchange in colloidal metal nitride nanocrystals, employing Cu3N nanocrystals as starting materials to synthesize Ni4N and CoN nanocrystals. By controlling the reaction conditions, Cu3N@Ni4N and Cu3N@CoN core@shell heterostructures with tunable compositions can also be obtained. The Ni4N and CoN nanocrystals are evaluated as catalysts for the electrochemical oxygen evolution reaction (OER). Remarkably, CoN nanocrystals demonstrate superior OER performance with a low overpotential of 286 mV at 10 mA·cm-2, a small Tafel slope of 89 mV·dec-1, and long-term stability. Our CER approach in colloidal TMNs offers a new strategy for preparing other metal nitride nanocrystals and their heterostructures, paving the way for prospective applications.

2.
Macromol Rapid Commun ; 45(5): e2300516, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38105320

RESUMEN

Heat-resistant polymer materials have been widely used in many fields, but their anticounterfeit is still a significant challenge. This work has successfully constructed a heat-resistant polymer material that can achieve self-anticounterfeit. In response to changes in the external environment, the color of polymer changes from yellow-green to red reversibly, which is due to the fact that polymer material's backbone undergoes isomerization. Therefore, this high-performance polymer material can not only be used in a high-temperature environment for a long time but also achieve its anticounterfeit and be used in advanced security applications.


Asunto(s)
Calor , Polímeros , Esqueleto
3.
Angew Chem Int Ed Engl ; : e202411056, 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245869

RESUMEN

Reversibility of metallic Zn anode serves as the corner stone for the development of aqueous Zn metal battery, which motivates scrutinizing the electrolyte-Zn interface. As the representative organic zinc salt, zinc trifluorosulfonate (Zn(OTf)2) facilitates a broad class of aqueous electrolytes, however, the stability issue of Zn anode remains crucial. The great challenge lies in the lack of Zn anode protection by the pristinely formed surface structure in aqueous Zn(OTf)2 electrolytes. Accordingly, an electrochemical route was developed to grow a uniform zinc trifluorosulfonate hydroxide (ZTH) layer on Zn anode as an artificial SEI, via regulation on metal dissolution and strong coordination ability of zinc ions. Co-precipitation was proposed to be the formation mechanism for the artificial SEI, where the reduction stability of OTf‾ anion and the low-symmetry layer structure of ZTH was unmasked. This artificial SEI favors interfacial kinetics, depresses side reactions, and well maintains its integrity during cycling, leading to a prolonged lifespan of Zn stripping/plating with a high DOD of ~85%, and an improved cycling stability of ~92% retention rate for V2O5/Zn cell at 1 A g-1. The unveiled role of anion on Zn anode drives the contemplation on the surface chemistry for the blooming aqueous rechargeable battery.

4.
Am J Transplant ; 23(4): 484-497, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36746335

RESUMEN

Brain death (BD) donors are the primary source of donor organs for liver transplantation. However, the effects of BD on donor livers and outcomes after liver transplantation remain unclear. Here, we explored the role of complement and the therapeutic effect of complement inhibition in BD-induced liver injury and posttransplantation injury in a mouse BD and liver transplantation model. For complement inhibition, we used complement receptor 2 (CR2)-Crry, a murine inhibitor of C3 activation that specifically targets sites of complement activation. In the mouse model, BD resulted in complement activation and liver injury in donor livers and a cascade liver injury posttransplantation, mediated in part through the C3a-C3aR (C3a receptor) signaling pathway, which was ameliorated by treatment with CR2-Crry. Treatment of BD donors with CR2-Crry improved graft survival, which was further improved when recipients received an additional dose of CR2-Crry posttransplantation. Mechanistically, we determined that complement inhibition alleviated BD-induced donor liver injury and posttransplant cascade injury by regulating phosphoinositide 3-kinase (PI3K) signaling pathways. Together, BD induced donor liver injury and cascade injury post-transplantation, which was mediated by complement activation products acting on PI3K signaling pathways. Our study provides an experimental basis for developing strategies to improve the survival of BD donor grafts in liver transplantation.


Asunto(s)
Enfermedad Hepática Crónica Inducida por Sustancias y Drogas , Trasplante de Hígado , Daño por Reperfusión , Animales , Ratones , Humanos , Fosfatidilinositol 3-Quinasas , Fosfatidilinositol 3-Quinasa , Trasplante de Hígado/efectos adversos , Muerte Encefálica , Donadores Vivos , Proteínas del Sistema Complemento , Transducción de Señal , Proteínas Recombinantes de Fusión
5.
Small ; : e2308650, 2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38078791

RESUMEN

The exposure of active edge sites of transition metal dichalcogenide (TMD) in TMD-based heterostructures is essential to enhance the catalytic activity toward electrochemical catalytic hydrogen evolution (HER). The construction of TMD-based edge-epitaxial heterostructures can maximally expose the active edge sites. However, owing to the 2D crystal structures, it remains a great challenge to vertically align layered TMDs on non-layered metal chalcogenides. Herein, the synthesis of Cu2-x Se-MoSe2 edge-epitaxial heterostructure is reported by a facile one-pot wet-chemical method. A high density of MoSe2 nanosheets grown vertically to the <111>Cu2-xSe on the surface of Cu2-x Se nanocrystals is observed. Such edge-epitaxial configuration allows the exposure of abundant active edge sites of MoSe2 and enhances the changer transfer between MoSe2 and Cu2-x Se. As a result, the obtained Cu2-x Se-MoSe2 epitaxial heterostructures show excellent HER performance as compared to that of Cu2-x Se@1T/2H-MoSe2 core@shell heterostructure with similar size. This work not only offers a novel approach for designing efficient electrochemical catalysis but also enriches the diversity of TMD-based heterostructures, holding promise for various applications in the future.

6.
Small ; 17(11): e2006135, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33605086

RESUMEN

Construction of 2D transition metal dichalcogenide (TMD)-based epitaxial heterostructures with different compositions is important for various promising applications, including electronics, photonics, and catalysis. However, the rational design and controlled synthesis of such kind of heterostructures still remain challenge, especially for those consisting of layered TMDs and other non-layered materials. Here, a facile one-pot, wet-chemical method is reported to synthesize Cu2- χ Sy Se1- y -MoS2 heterostructures in which two types of different epitaxial configurations, i.e., vertical and lateral epitaxies, coexist. The chalcogen ratio (S/Se) in Cu2- χ Sy Se1- y and the loading amount of MoS2 in the heterostructures can be tuned. Impressively, the obtained Cu2- χ Sy Se1- y -MoS2 heterostructures can be transformed to CdSy Se1- y -MoS2 without morphological change via cation exchange. As a proof-of-concept application, the obtained CdSy Se1- y -MoS2 heterostructures with controllable compositions are used as photocatalysts, exhibiting distinctive catalytic activities toward the photocatalytic hydrogen evolution under visible light irradiation. The method paves the way for the synthesis of different TMD-based lateral epitaxial heterostructures with unique properties for various applications.

7.
J Am Chem Soc ; 142(19): 8953-8961, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32307986

RESUMEN

Metal-organic framework (MOF) heterostructures have shown promising applications in gas adsorption, gas separation, catalysis, and energy, arising from the synergistic effect of each component. However, owing to the difficulty in controlling the size, shape, nucleation, and growth of MOFs, it remains a great challenge to construct MOF heterostructures with precisely controlled orientation, morphology, dimensionality, and spatial distribution of each component. Here, we report a seeded epitaxial growth method to prepare a series of hierarchical MOF heterostructures by engineering the structures, sizes, dimensionalities, morphologies, and lattice parameters of both MOF seeds and the secondary MOFs. In these heterostructures, PCN-222 (also known as MOF-545) nanorods selectively grow along the major axis of the ellipsoid-like PCN-608 nanoparticles, on the two end facets of the hexagonal prism-like NU-1000 nanorods, and on the two basal planes of the hexagonal PCN-134 nanoplates, while Zr-BTB nanosheets selectively grow on the six edge facets of PCN-134 nanoplates. The selective epitaxial growth of MOFs opens the way to synthesize different hierarchical heterostructures with tunable architectures and dimensionalities, which could process various promising applications.

8.
J Am Chem Soc ; 142(15): 7161-7167, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32207969

RESUMEN

Understanding the reaction mechanism for the catalytic process is essential to the rational design and synthesis of highly efficient catalysts. MoS2 has been reported to be an efficient catalyst toward the electrochemical hydrogen evolution reaction (HER), but it still lacks direct experimental evidence to reveal the mechanism for MoS2-catalyzed electrochemical HER process at the atomic level. In this work, we develop a wet-chemical synthetic method to prepare the single-layer MoS2-coated polyhedral Ag core-shell heterostructure (Ag@MoS2) with tunable sizes as efficient catalysts for the electrochemical HER. The Ag@MoS2 core-shell heterostructures are used as ideal platforms for the real-time surface-enhanced Raman spectroscopy (SERS) study owing to the strong electromagnetic field generated in the plasmonic Ag core. The in situ SERS results provide solid Raman spectroscopic evidence proving the S-H bonding formation on the MoS2 surface during the HER process, suggesting that the S atom of MoS2 is the catalytic active site for the electrochemical HER. It paves the way on the design and synthesis of heterostructures for exploring their catalytic mechanism at atomic level based on the in situ SERS measurement.

9.
Chem Rev ; 117(9): 6225-6331, 2017 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-28306244

RESUMEN

Since the discovery of mechanically exfoliated graphene in 2004, research on ultrathin two-dimensional (2D) nanomaterials has grown exponentially in the fields of condensed matter physics, material science, chemistry, and nanotechnology. Highlighting their compelling physical, chemical, electronic, and optical properties, as well as their various potential applications, in this Review, we summarize the state-of-art progress on the ultrathin 2D nanomaterials with a particular emphasis on their recent advances. First, we introduce the unique advances on ultrathin 2D nanomaterials, followed by the description of their composition and crystal structures. The assortments of their synthetic methods are then summarized, including insights on their advantages and limitations, alongside some recommendations on suitable characterization techniques. We also discuss in detail the utilization of these ultrathin 2D nanomaterials for wide ranges of potential applications among the electronics/optoelectronics, electrocatalysis, batteries, supercapacitors, solar cells, photocatalysis, and sensing platforms. Finally, the challenges and outlooks in this promising field are featured on the basis of its current development.

10.
J Am Chem Soc ; 139(25): 8653-8660, 2017 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-28582624

RESUMEN

Rational design and synthesis of heterostructures based on transition metal dichalcogenides (TMDs) have attracted increasing interests because of their promising applications in electronics, catalysis, etc. However, the construction of epitaxial heterostructures with an interface at the edges of TMD nanosheets (NSs) still remains a great challenge. Here, we report a strategy for controlled synthesis of a new type of heterostructure in which TMD NSs, including MoS2 and MoSe2, vertically grow along the longitudinal direction of one-dimensional (1D) Cu2-xS nanowires (NWs) in an epitaxial manner. The obtained Cu2-xS-TMD heterostructures with tunable loading amount and lateral size of TMD NSs are achieved by the consecutive growth of TMD NSs on Cu2-xS NWs through gradual injection of chalcogen precursors. After cation exchange of Cu in Cu2-xS-TMD heterostructures with Cd, the obtained CdS-MoS2 heterostructures retained their original architectures. Compared to the pure CdS NWs, the CdS-MoS2 heterostructures with 7.7 wt % loading of MoS2 NSs exhibit the best performance in the photocatalytic hydrogen evolution reaction with a H2 production rate up to 4647 µmol·h-1·g-1, about 58 times that catalyzed with pure CdS NWs. Our synthetic strategy opens up a new way for the controlled synthesis of TMD-based heterostructures, which could have various promising applications.

11.
Small ; 13(19)2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28306204

RESUMEN

The deterioration of water resources due to oil pollution, arising from oil spills, industrial oily wastewater discharge, etc., urgently requires the development of novel functional materials for highly efficient water remediation. Recently, superhydrophilic and underwater superoleophobic materials have drawn significant attention due to their low oil adhesion and selective oil/water separation. However, it is still a challenge to prepare low-cost, environmentally friendly, and multifunctional materials with superhydrophilicity and underwater superoleophobicity, which can be stably used for oil/water separation under harsh working conditions. Here, the preparation of nanofiber-based meshes derived from waste glass through a green and sustainable route is demonstrated. The resulting meshes exhibit excellent performance in the selective separation of a wide range of oil/water mixtures. Importantly, these meshes can also maintain the superwetting property and high oil/water separation efficiency under various harsh conditions. Furthermore, the as-prepared mesh can remove water-soluble contaminants simultaneously during the oil/water separation process, leading to multifunctional water purification. The low-cost and environmentally friendly fabrication, harsh-environment resistance, and multifunctional characteristics make these nanofiber-based meshes promising toward oil/water separation under practical conditions.

12.
Angew Chem Int Ed Engl ; 56(2): 578-581, 2017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-27918142

RESUMEN

The incorporation of metal-organic frameworks (MOFs) into membrane-shaped architectures is of great importance for practical applications. The currently synthesized MOF-based membranes show many disadvantages, such as poor compatibility, low dispersity, and instability, which severely limit their utility. Herein, we present a general, facile, and robust approach for the synthesis of MOF-based composite membranes through the in situ growth of MOF plates in the channels of anodized aluminum oxide (AAO) membranes. After being used as catalysis reactors, they exhibit high catalytic performance and stability in the Knoevenagel condensation reaction. The high catalytic performance might be attributed to the intrinsic structure of MOF-based composite membranes, which can remove the products from the reaction zone quickly, and prevent the aggregation and loss of catalysts during reaction and recycling process.

13.
Angew Chem Int Ed Engl ; 56(35): 10486-10490, 2017 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-28675526

RESUMEN

Preparation of two-dimensional (2D) heterostructures is important not only fundamentally, but also technologically for applications in electronics and optoelectronics. Herein, we report a facile colloidal method for the synthesis of WOn -WX2 (n=2.7, 2.9; X=S, Se) heterostructures by sulfurization or selenization of WOn nanomaterials. The WOn -WX2 heterostructures are composed of WO2.9 nanoparticles (NPs) or WO2.7 nanowires (NWs) grown together with single- or few-layer WX2 nanosheets (NSs). As a proof-of-concept application, the WOn -WX2 heterostructures are used as the anode interfacial buffer layer for green quantum dot light-emitting diodes (QLEDs). The QLED prepared with WO2.9 NP-WSe2 NS heterostructures achieves external quantum efficiency (EQE) of 8.53 %. To our knowledge, this is the highest efficiency in the reported green QLEDs using inorganic materials as the hole injection layer.

14.
Small ; 12(43): 5920-5926, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27592615

RESUMEN

A novel 3D cobalt sulfide (CoS) nanoparticle-decorated nitrogen and sulfur co-doped reduced graphene oxide aerogel (NSGA), referred to as CoS/NSGA, is prepared via three sequential processes, i.e., freeze-drying, annealing, and sulfidization. The obtained CoS/NSGA exhibits excellent electrocatalytic performance in the alkaline solution.

15.
Small ; 12(34): 4669-74, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27416293

RESUMEN

A facile in situ synthetic method is developed to synthesize metal sulfide nanoparticles based on 2D M-TCPP (M = Cu, Cd, or Co, TCPP = tetrakis(4-carboxyphenyl)porphyrin)) metal-organic framework nanosheets. The obtained CuS/Cu-TCPP composite nanosheet is used as the active material in photoelectrochemical cells, showing notably increased photocurrent due to the improved exciton separation and charge carrier transport.

16.
Small ; 12(14): 1866-74, 2016 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-26915628

RESUMEN

The high-yield and scalable production of single-layer ternary transition metal dichalcogenide nanosheets with ≈66% of metallic 1T phase, including MoS(2x)Se2(1-x) and Mo(x)W(1-x)S2 is achieved via electrochemical Li-intercalation and the exfoliation method. Thin film MoS(2x)Se2(1- x) nanosheets drop-cast on a fluorine-doped tin oxide substrate are used as an efficient electrocatalyst on the counter electrode for the tri-iodide reduction in a dye-sensitized solar cell.

17.
Community Ment Health J ; 52(4): 466-71, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26537364

RESUMEN

A first step to achieve successful aging is assessing functional wellbeing of older adults. This study reports the development of a culturally appropriate brief scale (the Multidimensional Functional Health Scale for Chinese Elderly, MFHSCE) to assess the functional health of Chinese elderly. Through systematic literature review, Delphi method, cultural adaptation, synthetic statistical item selection, Cronbach's alpha and confirmatory factor analysis, we conducted development of item pool, two rounds of item selection, and psychometric evaluation. Synthetic statistical item selection and psychometric evaluation was processed among 539 and 2032 older adults, separately. The MFHSCE consists of 30 items, covering activities of daily living, social relationships, physical health, mental health, cognitive function, and economic resources. The Cronbach's alpha was 0.92, and the comparative fit index was 0.917. The MFHSCE has good internal consistency and construct validity; it is also concise and easy to use in general practice, especially in communities in China.


Asunto(s)
Evaluación Geriátrica/métodos , Estado de Salud , Encuestas y Cuestionarios , Actividades Cotidianas , Anciano , Anciano de 80 o más Años , China , Cognición , Análisis Factorial , Femenino , Humanos , Relaciones Interpersonales , Masculino , Salud Mental , Persona de Mediana Edad , Psicometría , Reproducibilidad de los Resultados , Factores Socioeconómicos
18.
J Am Chem Soc ; 137(32): 10430-6, 2015 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-26241063

RESUMEN

High-yield preparation of ultrathin two-dimensional (2D) nanosheets is of great importance for the further exploration of their unique properties and promising applications. Herein, for the first time, the high-yield and scalable production of ultrathin 2D ternary chalcogenide nanosheets, including Ta2NiS5 and Ta2NiSe5, in solution is achieved by exfoliating their layered microflakes. The size of resulting Ta2NiS5 and Ta2NiS5 nanosheets ranges from tens of nanometers to few micrometers. Importantly, the production yield of single-layer Ta2NiS5 nanosheets is very high, ca. 86%. As a proof-of-concept application, the single-layer Ta2NiS5 is used as a novel fluorescence sensing platform for the detection of DNA with excellent selectivity and high sensitivity (with detection limit of 50 pM). These solution-processable, high-yield, large-amount ternary chalcogenide nanosheets may also have potential applications in electrocatalysis, supercapacitors, and electronic devices.


Asunto(s)
ADN/análisis , Nanoestructuras/química , Nanotecnología/métodos , Tantalio/química , ADN de Cadena Simple/análisis , ADN de Cadena Simple/química , Fluorescencia , Límite de Detección , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Níquel/química , Espectroscopía de Fotoelectrones , Compuestos de Selenio/química , Sensibilidad y Especificidad , Espectrometría de Fluorescencia/instrumentación , Espectrometría de Fluorescencia/métodos , Espectrometría por Rayos X , Sulfuros/química , Difracción de Rayos X
19.
J Am Chem Soc ; 137(4): 1444-7, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25597345

RESUMEN

Assembly of noble metal nanocrystals into free-standing two-dimensional (2D) nanostructures with a regular shape is still a challenge. Here we report the preparation of a novel 2D AuAg nanosheet with length of 1.50 ± 0.30 µm, width of 510 ± 160 nm, and thickness of ∼100 nm via the assembly of ultrathin AuAg nanowires in the presence of the triblock copolymer Pluronic P123. The self-assembly of P123 and the fusion behavior of the nanowires during the assembly process are the key reasons for the formation of AuAg nanosheets in P123. Furthermore, the obtained AuAg nanosheet@P123 is used as the active material in a memory device that exhibits the write-once-read-many-times memory behavior.

20.
Chemistry ; 21(24): 8691-5, 2015 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-25925988

RESUMEN

Triangular Ag-Pd alloy nanoframes were successfully synthesized through galvanic replacement by using Ag nanoprisms as sacrificial templates. The ridge thickness of the Ag-Pd alloy nanoframes could be readily tuned by adjusting the amount of the Pd source during the reaction. These obtained triangular Ag-Pd alloy nanoframes exhibit superior electrocatalytic activity for the methanol oxidation reaction as compared with the commercial Pd/C catalyst due to the alloyed Ag-Pd composition as well as the hollow-framed structures. This work would be highly impactful in the rational design of future bimetallic alloy nanostructures with high catalytic activity for fuel cell systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA