Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Fish Shellfish Immunol ; 144: 109241, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37992914

RESUMEN

The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway is a pervasive intracellular signal transduction pathway, involving in biological processes such as cell proliferation, differentiation, apoptosis and immune regulation. In this study, seven STAT genes, STAT1, STAT1-like, STAT2, STAT3, STAT4, STAT5a and STAT5b, were identified and characterized in spotted seabass (Lateolabrax maculatus). Analyses of multiple sequence alignment, genomic organization, phylogeny and conserved synteny were conducted to infer the evolutionary conservation of these genes in the STAT family. The results of the bioinformatics analysis assumed that STAT1 and STAT1-like might be homologous to STAT1a and STAT1b, respectively. Furthermore, the expression of the seven genes were detected in eight tissues of healthy spotted seabass, which revealed that they were expressed in a variety of tissues, mainly in gill, spleen and muscle, and extremely under-expression in liver. The expression of the seven genes in gill, head-kidney, spleen and intestine were significantly induced by lipopolysaccharide (LPS) or Edwardsiella tarda challenge. The expression of most of the LmSTATs were up-regulated, and the highest expression levels at 12 h after LPS stimulation, however, the LmSTATs were down-regulated by E. tarda infection. The results of subcellular localization show that the native LmSTAT1, LmSTAT1-like, LmSTAT2, LmSTAT3 and LmSTAT5a were localized in the cytoplasm, but they were translocated into the nucleus after LPS stimulation. Whereas, LmSTAT4 and LmSTAT5b were translocation into the nucleus whether with LPS stimulation or not. Overall, this is the first study to systematically revealed the localization of STAT members in fish, and indicated that LmSTATs participate in the process of protecting the host from pathogens invasion in the form of entry into nucleus.


Asunto(s)
Lubina , Lipopolisacáridos , Animales , Lipopolisacáridos/farmacología , Proteínas de Peces , Factor de Transcripción STAT1/genética , Quinasas Janus/genética , Genoma
2.
Fish Shellfish Immunol ; 148: 109516, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38548189

RESUMEN

The genome evolution of Antarctic notothenioids has been modulated by their extreme environment over millennia and more recently by human-caused constraints such as overfishing and climate change. Here we investigated the characteristics of the immune system in Notothenia rossii and how it responds to 8 h immersion in viral (Poly I:C, polyinosinic: polycytidylic acid) and bacterial (LPS, lipopolysaccharide) proxies. Blood plasma antiprotease activity and haematocrit were reduced in Poly I:C-treated fish only, while plasma protein, lysozyme activity and cortisol were unchanged with both treatments. The skin and duodenum transcriptomes responded strongly to the treatments, unlike the liver and spleen which had a mild response. Furthermore, the skin transcriptome responded most to the bacterial proxy (cell adhesion, metabolism and immune response processes) and the duodenum (metabolism, response to stress, regulation of intracellular signal transduction, and immune system responses) to the viral proxy. The differential tissue response to the two proxy challenges is indicative of immune specialisation of the duodenum and the skin towards pathogens. NOD-like and C-type lectin receptors may be central in recognising LPS and Poly I:C. Other antimicrobial compounds such as iron and selenium-related genes are essential defence mechanisms to protect the host from sepsis. In conclusion, our study revealed a specific response of two immune barrier tissue, the skin and duodenum, in Notothenia rossii when exposed to pathogen proxies by immersion, and this may represent an adaptation to pathogen infective strategies.


Asunto(s)
Conservación de los Recursos Naturales , Perciformes , Humanos , Animales , Inmersión , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Explotaciones Pesqueras , Perciformes/metabolismo , Poli I/metabolismo , Regiones Antárticas
3.
Gen Comp Endocrinol ; 355: 114563, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38830459

RESUMEN

Investigating the principles of fish fat deposition and conducting related research are current focal points in fish nutrition. This study explores the endocrine regulation of LEAP2 and GHSR1a in zebrafish by constructing mutantmodels andexamining the effects of the endocrine factors LEAP2 and its receptor GHSR1a on zebrafish growth, feeding, and liver fat deposition. Compared to the wild type (WT), the mutation of LEAP2 results in increased feeding and decreased swimming in zebrafish. The impact is more pronounced in adult female zebrafish, characterized by increased weight, length, width, and accumulation of lipid droplets in the liver.Incontrast, deficiency in GHSR1a significantly reduces the growth of male zebrafish and markedly decreases liver fat deposition.These research findings indicate the crucial roles of LEAP2 and GHSR1a in zebrafish feeding, growth, and intracellular fat metabolism. This study, for the first time, investigated the endocrine metabolic regulation functions of LEAP2 and GHSR1a in the model organism zebrafish, providing initial insights into their effects and potential mechanisms on zebrafish fat metabolism.


Asunto(s)
Sistemas CRISPR-Cas , Metabolismo de los Lípidos , Receptores de Ghrelina , Pez Cebra , Animales , Pez Cebra/genética , Pez Cebra/metabolismo , Receptores de Ghrelina/genética , Receptores de Ghrelina/metabolismo , Metabolismo de los Lípidos/genética , Sistemas CRISPR-Cas/genética , Masculino , Femenino , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Mutación
4.
BMC Biol ; 21(1): 262, 2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-37981664

RESUMEN

BACKGROUND: RNA editing by adenosine deaminase acting on RNA (ADAR) occurs in all metazoans and fulfils several functions. Here, we examined effects of acclimation temperature (27 °C, 18 °C,13 °C) on editing patterns in six tissues of zebrafish (Danio rerio). RESULTS: Sites and total amounts of editing differed among tissues. Brain showed the highest levels, followed by gill and skin. In these highly edited tissues, decreases in temperatures led to large increases in total amounts of editing and changes in specific edited sites. Gene ontology analysis showed both similarities (e.g., endoplasmic reticulum stress response) and differences in editing among tissues. The majority of edited sites were in transcripts of transposable elements and the 3'UTR regions of protein coding genes. By experimental validation, translation efficiency was directly related to extent of editing of the 3'UTR region of an mRNA. CONCLUSIONS: RNA editing increases 3'UTR polymorphism and affects efficiency of translation. Such editing may lead to temperature-adaptive changes in the proteome through altering relative amounts of synthesis of different proteins.


Asunto(s)
Edición de ARN , Pez Cebra , Animales , Pez Cebra/genética , Regiones no Traducidas 3' , Temperatura , Aclimatación
5.
Int J Mol Sci ; 25(6)2024 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-38542120

RESUMEN

China leads the world in freshwater pearl production, an industry in which the triangle sail mussel (Sinohyriopsis cumingii) plays a pivotal role. In this paper, we report a high-quality chromosome-level genome assembly of S. cumingii with a size of 2.90 Gb-the largest yet reported among bivalves-and 89.92% anchorage onto 19 linkage groups. The assembled genome has 37,696 protein-coding genes and 50.86% repeat elements. A comparative genomic analysis revealed expansions of 752 gene families, mostly associated with biomineralization, and 237 genes under strong positive selection. Notably, the fibrillin gene family exhibited gene family expansion and positive selection simultaneously, and it also exhibited multiple high expressions after mantle implantation by transcriptome analysis. Furthermore, RNA silencing and an in vitro calcium carbonate crystallization assay highlighted the pivotal role played by one fibrillin gene in calcium carbonate deposition and aragonite transformation. This study provides a valuable genomic resource and offers new insights into the mechanism of pearl biomineralization.


Asunto(s)
Bivalvos , Unionidae , Animales , Biomineralización/genética , Bivalvos/genética , Bivalvos/química , Unionidae/genética , Unionidae/metabolismo , Carbonato de Calcio , Agua Dulce , Fibrilinas/metabolismo
6.
Fish Shellfish Immunol ; 143: 109225, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37977545

RESUMEN

Liver-expressed antimicrobial peptide 2 (LEAP2) is a blood-derived antimicrobial peptide expressed predominantly in the liver. Although LEAP2 has been reported to exert antimicrobial effects in various fish species, its antimicrobial mechanism is not entirely understood. Zebrafish is an intensively developing animal model for studying bacterial diseases. In this study, we used zebrafish to identify the role of LEAP2 in bacterial infection. We found that knockout of LEAP2 in zebrafish led to a higher bacterial burden and mortality. To further investigate the effect of LEAP2 mutation on the immune system, we conducted a comparative transcriptome analysis of zebrafish with a mutant of LEAP2. Based on gene ontologies (GO) enrichment, LEAP2 mutant zebrafish revealed that, compared to wild-type zebrafish, robust responses to bacteria, inflammatory factors, and disrupt immune homeostasis and induct hyperinflammation. Furthermore, based on Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, six immune pathways were identified: Phagosome, NOD-like receptor, ferroptosis, Cytokine-cytokine receptor, Toll-like receptor, and FOXO signalling pathways. Interestingly, besides the liver, muscle, intestine, and eggs are also significantly enriched to the ferroptosis pathway, as revealed using quantitative polymerase chain reaction (qPCR), further confirmed that the effect of LEAP2 mutations on inflammatory factors and ferroptosis-related genes. Most importantly, this is the first report of the zebrafish LEAP2 mutant transcriptome obtained using high-throughput sequencing. Our study employed comparative transcriptome analysis to reveal the inflammatory response and ferroptosis-signalling pathway as a novel potential mechanism of LEAP2 antibacterial activity, laying the foundation for future studies of LEAP2 immune functions.


Asunto(s)
Aeromonas hydrophila , Pez Cebra , Animales , Aeromonas hydrophila/fisiología , Perfilación de la Expresión Génica/veterinaria , Transcriptoma , Antibacterianos , Citocinas/genética
7.
Mol Cell Proteomics ; 20: 100023, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33293461

RESUMEN

Gonadal soma-derived factor (gsdf) has been demonstrated to be essential for testicular differentiation in medaka (Oryzias latipes). To understand the protein dynamics of Gsdf in spermatogenesis regulation, we used a His-tag "pull-down" assay coupled with shotgun LC-MS/MS to identify a group of potential interacting partners for Gsdf, which included cytoplasmic dynein light chain 2, eukaryotic polypeptide elongation factor 1 alpha (eEF1α), and actin filaments in the mature medaka testis. As for the interaction with transforming growth factor ß-dynein being critical for spermatogonial division in Drosophila melanogaster, the physical interactions of Gsdf-dynein and Gsdf-eEF1α were identified through a yeast 2-hybrid screening of an adult testis cDNA library using Gsdf as bait, which were verified by a paired yeast 2-hybrid assay. Coimmunoprecipitation of Gsdf and eEF1α was defined in adult testes as supporting the requirement of a Gsdf and eEF1α interaction in testis development. Proteomics analysis (data are available via ProteomeXchange with identifier PXD022153) and ultrastructural observations showed that Gsdf deficiency activated eEF1α-mediated protein synthesis and ribosomal biogenesis, which in turn led to the differentiation of undifferentiated germ cells. Thus, our results provide a framework and new insight into the coordination of a Gsdf (transforming growth factor ß) and eEF1α complex in the basic processes of germ cell proliferation, transcriptional and translational control of sexual RNA, which may be fundamentally conserved across the phyla during sexual differentiation.


Asunto(s)
Proteínas de Peces/metabolismo , Células Germinativas/citología , Oryzias/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Animales , Animales Modificados Genéticamente , Proliferación Celular , Femenino , Masculino , Oryzias/genética , Proteómica , ARN/metabolismo , Testículo/citología , Testículo/metabolismo , Testículo/ultraestructura , Factor de Crecimiento Transformador beta/genética
8.
J Fish Dis ; 46(9): 905-916, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37245215

RESUMEN

Liver-expressed antimicrobial peptide 2 (LEAP2) is a small peptide, which is consisted of signal peptide, pro-peptide and the bioactive mature peptide. Mature LEAP2 is an antibacterial peptide with four highly conserved cysteines forming two intramolecular disulfide bonds. Chionodraco hamatus, an Antarctic notothenioid fish that lives in the coldest water, has white blood unlike most fish of the world. In this study, the LEAP2 coding sequence was cloned from C. hamatus, including a 29 amino acids signal peptide and mature peptide of 46 amino acids. High levels of LEAP2 mRNA were detected in the skin and liver. Mature peptide was obtained by chemical synthesis in vitro, displayed selective antimicrobial activities against Escherichia coli, Aeromonas hydrophila, Staphylococcus aureus and Streptococcus agalactiae. Liver-expressed antimicrobial peptide 2 showed bactericidal activity by destroying the cell membrane integrity and robustly combined with bacterial genomic DNA. In addition, overexpression of the Tol-LEAP2-EGFP in zebrafish larva showed stronger antimicrobial activity in C. hamatus than in zebrafish, accompanied by lower bacterial load and expression of pro-inflammatory factors. This is the first demonstration of the antimicrobial activity of LEAP2 from C. hamatus, which is of useful value in improving resistance to pathogens.


Asunto(s)
Antiinfecciosos , Enfermedades de los Peces , Perciformes , Animales , Pez Cebra , Hepcidinas , Perciformes/genética , Péptidos , Aminoácidos , Señales de Clasificación de Proteína , Antibacterianos/farmacología
9.
BMC Biol ; 20(1): 231, 2022 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-36224580

RESUMEN

BACKGROUND: Antarctica harbors the bulk of the species diversity of the dominant teleost fish suborder-Notothenioidei. However, the forces that shape their evolution are still under debate. RESULTS: We sequenced the genome of an icefish, Chionodraco hamatus, and used population genomics and demographic modelling of sequenced genomes of 52 C. hamatus individuals collected mainly from two East Antarctic regions to investigate the factors driving speciation. Results revealed four icefish populations with clear reproduction separation were established 15 to 50 kya (kilo years ago) during the last glacial maxima (LGM). Selection sweeps in genes involving immune responses, cardiovascular development, and photoperception occurred differentially among the populations and were correlated with population-specific microbial communities and acquisition of distinct morphological features in the icefish taxa. Population and species-specific antifreeze glycoprotein gene expansion and glacial cycle-paced duplication/degeneration of the zona pellucida protein gene families indicated fluctuating thermal environments and periodic influence of glacial cycles on notothenioid divergence. CONCLUSIONS: We revealed a series of genomic evidence indicating differential adaptation of C. hamatus populations and notothenioid species divergence in the extreme and unique marine environment. We conclude that geographic separation and adaptation to heterogeneous pathogen, oxygen, and light conditions of local habitats, periodically shaped by the glacial cycles, were the key drivers propelling species diversity in Antarctica.


Asunto(s)
Cubierta de Hielo , Perciformes , Animales , Regiones Antárticas , Peces/genética , Genoma , Metagenómica , Oxígeno , Filogenia
10.
Compr Rev Food Sci Food Saf ; 20(4): 3319-3343, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33938116

RESUMEN

Worldwide, foods waste caused by putrefactive organisms and diseases caused by foodborne pathogens persist as public health problems even with a plethora of modern antimicrobials. Our over reliance on antimicrobials use in agriculture, medicine, and other fields will lead to a postantibiotic era where bacterial genotypic resistance, phenotypic adaptation, and other bacterial evolutionary strategies cause antimicrobial resistance (AMR). This AMR is evidenced by the emergence of multiple drug-resistant (MDR) bacteria and pan-resistant (PDR) bacteria, which produces cross-contamination in multiple fields and poses a more serious threat to food safety. A "red queen premise" surmises that the coevolution of phages and bacteria results in an evolutionary arms race that compels phages to adapt and survive bacterial antiphage strategies. Phages and their lysins are therefore useful toolkits in the design of novel antimicrobials in food protection and foodborne pathogens control, and the modality of using phages as a targeted vector against foodborne pathogens is gaining momentum based on many encouraging research outcomes. In this review, we discuss the rationale of using phages and their lysins as weapons against spoilage organisms and foodborne pathogens, and outline the targeted conquest or dodge mechanism of phages and the development of novel phage prospects. We also highlight the implementation of phages and their lysins to control foodborne pathogens in a farm-table-hospital domain in the postantibiotic era.


Asunto(s)
Infecciones Bacterianas , Bacteriófagos , Bacterias/genética , Inocuidad de los Alimentos , Humanos
11.
Fish Shellfish Immunol ; 98: 564-573, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32001354

RESUMEN

A relatively large repertoire of type I interferon (IFN) genes is apparent in rainbow trout/Atlantic salmon, that includes six different IFN subgroups (IFNa-IFNf) belonging to the three known type I IFN groups (1-3) in bony fish. Whether this is true for other salmonids, and how the various type I subgroups evolved in teleost fish was studied using the extensive genomic resources available for fish. This confirmed that salmonids, at least the Salmoninae, indeed have a complex (in terms of IFN subgroups present) and large (number of genes) IFN repertoire relative to other teleost fish. This is in part a consequence of the salmonid 4 R WGD that duplicated the growth hormone (GH) locus in which type I IFNs are generally located. Divergence of the IFN genes at the two GH loci was apparent but was not seen in common carp, a species that also underwent an independent 4 R WGD. However, expansion of IFN gene number can be found at the CD79b locus of some perciform fish (both freshwater and marine), with expansion of the IFNd gene repertoire. Curiously the primordial gene order of GH-IFNc-IFNb-IFNa-IFNe is largely retained in many teleost lineages and likely reflects the tandem duplications that are taking place to increase IFN gene number. With respect to the evolution of the IFN subgroups, a complex acquisition and/or loss has occurred in different teleost lineages, with complete loss of IFN genes at the GH or CD79b locus in some species, and reduction to a single IFN subgroup in others. It becomes clear that there are many variations to be discovered regarding the mechanisms by which fish elicit protective (antiviral) immune responses.


Asunto(s)
Evolución Biológica , Genoma , Interferones/genética , Salmonidae/genética , Animales , Duplicación de Gen , Interferones/clasificación , Salmonidae/inmunología
12.
Fish Physiol Biochem ; 46(1): 39-49, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31595407

RESUMEN

Hypoxia-inducible factors (HIFs) are master transcription factor regulating hypoxic responses in vertebrates. Species of Schizothoracine, a sub-family of cyprinidae, are highly endemic to the hypoxic Qinghai-Tibetan Plateau (QTP). What roles the HIFs play in hypoxic adaptation in the Schizothoracine fish is little known. In this study, the HIF-1α/B gene from Gymnocypris dobula (Gd) was characterized. The predicted protein for Gd-HIF-1α/B contains the main domains (bHLH, PAS, PAC, ODD, N-TAD, and C-TAD). Moreover, a specific mutation that the proline hydroxylation motif (LXXLAP) mutated into PxxLAP was observed in Gd-HIF-1α/B CODD domain, which may lead to changes in the function. To clarify whether HIF-1α/B of G. dobula possesses hypoxic adaptive features, Gd-HIF1α/B and Schizothorax prenanti-HIF1α/B (Sp-HIF1α/B) were cloned into an expression vector and transfected into 293T cells. Cell viability was found to be significantly higher in cells transfected with Gd-HIF-1α/B than those transfected with Sp-HIF-1α/B under hypoxic conditions. In addition, G. dobula HIF-1α/B showed stronger activity in transactivating the expression of nitric oxide (NO)-synthesizing enzyme, NOS2B under hypoxia stresses than the orthologous gene from S. prenanti, which were accompanied with upregulated expressions of NOS2B in heart of G. dobula, which may attribute to elevated NO levels detected in G. dobula than the lower land species. These results indicated that the HIF-1α plays an important role in mediating the iNOS signaling system in the process of evolutionary adaptation of the Schizothoracine to the highland environment.


Asunto(s)
Aclimatación/fisiología , Cyprinidae/fisiología , Citoprotección/fisiología , Peces/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Óxido Nítrico/metabolismo , Adaptación Fisiológica , Altitud , Animales , Evolución Biológica , Hipoxia
13.
Fish Shellfish Immunol ; 84: 1145-1156, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30408600

RESUMEN

The Nile tilapia, Oreochromis niloticus, is a species of high economic value and extensively cultured. The limited stress tolerance of this species to a low temperature usually leads to mass mortality and great loss. Nevertheless, there is limited information on the molecular mechanisms underlying the susceptibility to low temperature in the tilapia. In this study, tilapia was treated at 28 °C to a lethal temperature of 8 °C by a gradual decrement. Transcriptomic response of the immune organ, kidney, in tilapia was characterized using RNA-seq. In total, 2191 genes were annotated for significant expression, which were mainly associated with metabolism and immunity. Pathway analysis showed that immune-related pathways of phagosome and cell adhesion molecules (CAMs) pathway were significantly down-regulated under low temperature. Moreover, ferroptosis, a significantly changed pathway involved in tissue damage and acute renal failure, is reported here for the first time. The levels of serum parameters associated with kidney damage such as urea and uric acid (UA) increased significantly under low temperature. The immunofluorescence staining of the kidney showed that cell apoptosis occurred at low temperature. The results of the present study indicate that exposure to low temperature can cause kidney disfunction and down-regulate the immune-related pathway in the kidney of tilapia. This study provides new insight into the mechanism of kidney damage in fish under low temperature.


Asunto(s)
Cíclidos/fisiología , Frío/efectos adversos , Riñón/metabolismo , Transcriptoma , Animales , Cíclidos/genética , Análisis de Secuencia de ARN/veterinaria , Estrés Fisiológico
14.
Gen Comp Endocrinol ; 277: 122-129, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30951723

RESUMEN

Gonadal soma-derived factor (Gsdf) is a unique TGF-ß factor essential for both ovarian and testicular development in Hd-rR medaka (Oryzias latipes). However, the downstream genes regulated by Gsdf signaling remain unknown. Using a high-throughput proteomic approach, we identified a significant increase in the expression of the RNA-binding protein Igf2bp3 in gsdf-deficient ovaries. We verified this difference in transcription and protein expression against normal gonads using real-time PCR quantification and Western blotting. The genomic structure of igf2bp3 and the syntenic flanking segments are highly conserved across fish and mammals. igf2bp3 expression was correlated with oocyte development, which is consistent with the expression of the igf2bp3 ortholog Vg1-RBP/Vera in Xenopus. In contrast to the normal ovary, cysts of H3K27me3- and Igf2bp3-positive germ cells were dramatically increased in the one-month-old gsdf-deficient ovary, indicating that the gsdf depletion led to a dysregulation of Igf2bp3-mediated oocyte development. Our results provide novel insights into the Gsdf-Igf2bp3 signaling mechanisms that underlie the fundamental process of gametogenesis; these mechanisms may be well conserved across phyla.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Oocitos/metabolismo , Oryzias/genética , Proteínas de Unión al ARN/genética , Factor de Crecimiento Transformador beta/deficiencia , Secuencia de Aminoácidos , Animales , Proliferación Celular , Secuencia Conservada , Evolución Molecular , Femenino , Perfilación de la Expresión Génica , Histonas/metabolismo , Lisina/metabolismo , Masculino , Oogénesis/genética , Ovario/embriología , Ovario/metabolismo , Filogenia , Proteómica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/metabolismo
15.
BMC Genomics ; 19(1): 315, 2018 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720106

RESUMEN

BACKGROUND: Temperature adaptation of biological molecules is fundamental in evolutionary studies but remains unsolved. Fishes living in cold water are adapted to low temperatures through adaptive modification of their biological molecules, which enables their functioning in extreme cold. To study nucleotide and amino acid preference in cold-water fishes, we investigated the substitution asymmetry of codons and amino acids in protein-coding DNA sequences between cold-water fishes and tropical fishes., The former includes two Antarctic fishes, Dissostichus mawsoni (Antarctic toothfish), Gymnodraco acuticeps (Antarctic dragonfish), and two temperate fishes, Gadus morhua (Atlantic cod) and Gasterosteus aculeatus (stickleback), and the latter includes three tropical fishes, including Danio rerio (zebrafish), Oreochromis niloticus (Nile tilapia) and Xiphophorus maculatus (Platyfish). RESULTS: Cold-water fishes showed preference for Guanines and cytosines (GCs) in both synonymous and nonsynonymous codon substitution when compared with tropical fishes. Amino acids coded by GC-rich codons are favored in the temperate fishes, while those coded by AT-rich codons are disfavored. Similar trends were discovered in Antarctic fishes but were statistically weaker. The preference of GC rich codons in nonsynonymous substitution tends to increase ratio of small amino acid in proteins, which was demonstrated by biased small amino acid substitutions in the cold-water species when compared with the tropical species, especially in the temperate species. Prediction and comparison of secondary structure of the proteomes showed that frequency of random coils are significantly larger in the cold-water fish proteomes than those of the tropical fishes. CONCLUSIONS: Our results suggested that natural selection in cold temperature might favor biased GC content in the coding DNA sequences, which lead to increased frequency of small amino acids and consequently increased random coils in the proteomes of cold-water fishes.


Asunto(s)
Frío , Proteínas de Peces/química , Proteínas de Peces/genética , Peces/genética , Secuencia Rica en GC , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Estructura Secundaria de Proteína/genética , Alineación de Secuencia , Análisis de Secuencia de ARN
16.
Sensors (Basel) ; 18(2)2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29389860

RESUMEN

The effects of graphene stacking are investigated by comparing the results of methane adsorption energy, electronic performance, and the doping feasibility of five dopants (i.e., B, N, Al, Si, and P) via first-principles theory. Both zigzag and armchair graphenes are considered. It is found that the zigzag graphene with Bernal stacking has the largest adsorption energy on methane, while the armchair graphene with Order stacking is opposite. In addition, both the Order and Bernal stacked graphenes possess a positive linear relationship between adsorption energy and layer number. Furthermore, they always have larger adsorption energy in zigzag graphene. For electronic properties, the results show that the stacking effects on band gap are significant, but it does not cause big changes to band structure and density of states. In the comparison of distance, the average interlamellar spacing of the Order stacked graphene is the largest. Moreover, the adsorption effect is the result of the interactions between graphene and methane combined with the change of graphene's structure. Lastly, the armchair graphene with Order stacking possesses the lowest formation energy in these five dopants. It could be the best choice for doping to improve the methane adsorption.

17.
Nucleic Acids Res ; 43(19): 9198-213, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26227973

RESUMEN

The transcriptional programs of ectothermic teleosts are directly influenced by water temperature. However, the cis- and trans-factors governing cold responses are not well characterized. We profiled transcriptional changes in eight zebrafish tissues exposed to mildly and severely cold temperatures using RNA-Seq. A total of 1943 differentially expressed genes (DEGs) were identified, from which 34 clusters representing distinct tissue and temperature response expression patterns were derived using the k-means fuzzy clustering algorithm. The promoter regions of the clustered DEGs that demonstrated strong co-regulation were analysed for enriched cis-regulatory elements with a motif discovery program, DREME. Seventeen motifs, ten known and seven novel, were identified, which covered 23% of the DEGs. Two motifs predicted to be the binding sites for the transcription factors Bcl6 and Jun, respectively, were chosen for experimental verification, and they demonstrated the expected cold-induced and cold-repressed patterns of gene regulation. Protein interaction modeling of the network components followed by experimental validation suggested that Jun physically interacts with Bcl6 and might be a hub factor that orchestrates the cold response in zebrafish. Thus, the methodology used and the regulatory networks uncovered in this study provide a foundation for exploring the mechanisms of cold adaptation in teleosts.


Asunto(s)
Respuesta al Choque por Frío/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Regiones Promotoras Genéticas , Pez Cebra/genética , Animales , Línea Celular , Femenino , Perfilación de la Expresión Génica , Ontología de Genes , Masculino , Motivos de Nucleótidos , Especificidad de Órganos , Mapeo de Interacción de Proteínas , Factores de Transcripción/metabolismo
18.
BMC Evol Biol ; 16: 11, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26768152

RESUMEN

BACKGROUND: Erythropoietin (EPO) is a glycoprotein hormone that plays a principal regulatory role in erythropoiesis and initiates cell homeostatic responses to environmental challenges. The Qinghai-Tibet Plateau is a natural laboratory for hypoxia adaptation. Gymnocypris dobula is a highly specialized plateau schizothoracine fish that is restricted to > 4500 m high-altitude freshwater rivers and ponds in the Qinghai-Tibet Plateau. The role of EPO in the adaptation of schizothoracine fish to hypoxia is unknown. RESULTS: The EPO and EPO receptor genes from G. dobula and four other schizothoracine fish from various altitudinal habitats were characterized. Schizothoracine EPOs are predicted to possess 2-3 N-glycosylation (NGS) sites, 4-5 casein kinase II phosphorylation (CK2) sites, 1-2 protein kinase C (PKC) phosphorylation sites, and four conserved cysteine residues within four helical domains, with variations in the numbers of NGS and CK2 sites in G. dobula. PAML analysis indicated a d N/d S value (ω) = 1.112 in the G. dobula lineage, and a few amino acids potentially under lineage-specific positive selection were detected within the G. dobula EPO. Similarly, EPO receptors of the two high-altitude schizothoracines (G. dobula and Ptychobarbus kaznakovi), were found to be statistically on the border of positive selection using the branch-site model (P-value = 0.096), and some amino acids located in the ligand-binding domain and the fibronectin type III domain were identified as potentially positive selection sites. Tissue EPO expression profiling based on transcriptome sequencing of three schizothoracines (G. dobula, Schizothorax nukiangensis Tsao, and Schizothorax prenanti) showed significant upregulation of EPO expression in the brain and less significantly in the gill of G. dobula. The elevated expression together with the rapid evolution of the EPO gene in G. dobula suggested a possible role for EPO in adaptation to hypoxia. To test this hypothesis, Gd-EPO and Sp-EPO were cloned into an expression vector and transfected into the cultured cell line 293 T. Significantly higher cell viability was observed in cells transfected with Gd-EPO than cells harboring Sp-EPO when challenged by hypoxia. CONCLUSION: The deduced EPO proteins of the schizothoracine fish contain characteristic structures and important domains similar to EPOs from other taxa. The presence of potentially positive selection sites in both EPO and EPOR in G. dobula suggest possible adaptive evolution in the ligand-receptor binding activity of the EPO signaling cascade in G. dobula. Functional study indicated that the EPO from high-altitude schizothoracine species demonstrated features of hypoxic adaptation by reducing toxic effects or improving cell survival when expressed in cultured cells, providing evidence of molecular adaptation to hypoxic conditions in the Qinghai-Tibet Plateau.


Asunto(s)
Cyprinidae/fisiología , Citoprotección , Ecosistema , Eritropoyetina/fisiología , Oxígeno , Aclimatación , Adaptación Fisiológica , Animales , Evolución Biológica , Cyprinidae/genética , Eritropoyetina/genética , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/fisiología , Tibet
19.
Mol Ecol ; 24(18): 4664-78, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26268413

RESUMEN

The Antarctic icefish, a family (Channichthyidae) of teleosts within the perciform suborder Notothenioidei, are the only known vertebrates without oxygen-transporting haemoglobins and that are largely devoid of circulating erythrocytes. To elucidate the evo-devo mechanisms underpinning the suppressed erythropoiesis in the icefish, we conducted comparative studies on the transcriptomes and microRNAomes of the primary haematopoietic tissues between an icefish (Chionodraco hamatus) and two red-blooded notothenioids (Trematomus bernacchii and Gymnodraco acuticeps). We identified substantial remodelling of the haematopoietic programs in the icefish through which erythropoiesis is selectively suppressed. Experimental verification showed that erythropoietic suppression in the icefish may be attributable to the upregulation of TGF-ß signalling, which coincides with reductions in multiple transcription factors essential for erythropoiesis and the upregulation of hundreds of microRNAs, the majority (> 80%) of which potentially target erythropoiesis regulating factors. Of the six microRNAs selected for verification, three miRNAs (miR-152, miR-1388 and miR-16b) demonstrated suppressive functions on GATA1 and ALAS2, which are two factors important for erythroid differentiation, resulting in reduced numbers of erythroids in microinjected zebra fish embryos. Codon substitution analyses of the genes of the TGF-ß superfamily revealed signs of positive selection in TGF-ß1 and endoglin in the lineages leading to Antarctic notothenioids. Both genes are previously known to function in erythropoietic suppression. These findings implied a general trend of erythropoietic suppression in the cold-adapted notothenioid lineages through evolutionary modulation of the multi-functional TGF-ß signalling pathway. This trend is more pronounced in the haemoglobin-less icefish, which may pre-emptively hinder the otherwise defective erythroids from production.


Asunto(s)
Evolución Biológica , Eritropoyesis , Perciformes/genética , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Animales , Regiones Antárticas , MicroARNs/genética , Filogenia , Selección Genética , Análisis de Secuencia de ARN , Proteínas de la Superfamilia TGF-beta/genética , Transcriptoma
20.
Fish Physiol Biochem ; 41(5): 1345-58, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26122279

RESUMEN

The effects of Dissostichus mawsoni-Calmodulin (Dm-CaM) on growth performance, enzyme activities, respiratory burst, MDA level and immune-related gene expressions of the orange-spotted grouper (Epinephelus coioides) exposed to the acute low temperature stress were evaluated. The commercial diet supplemented with Dm-CaM protein was fed to the groupers for 6 weeks. No significant difference was observed in the specific growth rates, weight gains and survivals. After the feeding trial, the groupers were exposed to acute low temperature challenge. The groupers fed with Dm-CaM additive diet showed a significant decrease in the respiratory burst activity, while the blood cell number increased significantly at 25 °C by comparing with the control and additive control group. The enzymatic activity of SOD, ACP and ALP increased significantly in Dm-CaM additive group, while MDA level maintained stable with the lowest value. qRT-PCR analysis indicated that the up-regulated transcript expressions of CaM, C3, SOD2, LysC and HSPA4 were observed in Dm-CaM additive group. These results indicated that Dm-CaM additive diet may regulate the grouper immune response to the acute low temperature challenge.


Asunto(s)
Alimentación Animal/análisis , Calmodulina/farmacología , Frío , Proteínas de Peces/metabolismo , Perciformes/crecimiento & desarrollo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA