Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chem Commun (Camb) ; 59(58): 8973-8976, 2023 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-37386927

RESUMEN

The nitrate reduction reaction is emerging as having tremendous potential to mitigate nitrate pollution and simultaneously produce valuable ammonia. Here, we propose Co3O4 nanoparticles embedded in porous carbon nanofibers (Co3O4@CNF) as a high-efficiency catalyst to convert nitrate to ammonia, and it achieves a high faradaic efficiency of 92.7% and an extremely large NH3 yield of 23.4 mg h-1 mg-1cat, and also presents excellent electrochemical stability. Theoretical calculations reveal that the potential determining step (PDS) reaches as low as 0.28 eV. This work is expected to open a new avenue to rationally design robust noble-metal-free catalysts for the electrochemical synthesis of ammonia.

2.
Chem Commun (Camb) ; 58(39): 5901-5904, 2022 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-35474474

RESUMEN

Ambient electrochemical NO3- reduction is emerging as an appealing approach toward eliminating NO3- contaminants and generating NH3 simultaneously, but its efficiency is challenged by a lack of active and selective electrocatalysts. In this work, we report CoO nanoparticle decorated N-doped carbon nanotubes as an efficient catalyst for highly selective hydrogenation of NO3- to NH3. In 0.1 M NaOH electrolyte with 0.1 M NO3-, this catalyst is capable of achieving a large NH3 yield of up to 9041.6 ± 370.7 µg h-1 cm-2 and a high faradaic efficiency of 93.8 ± 1.5%, with excellent durability. Theoretical calculations reveal the catalytic mechanisms.

3.
ACS Appl Mater Interfaces ; 13(34): 40724-40730, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34423967

RESUMEN

Electrocatalytic nitrogen reduction to ammonia has attracted increasing attention as it is more energy-saving and eco-friendly. For this endeavor, the development of high-efficiency electrocatalysts with excellent selectivity and stability is indispensable to break up the stable covalent triple bond in nitrogen. In this study, we report monodisperse Cu clusters loaded on defective ZrO2 nanofibers for nitrogen reduction under mild conditions. Such an electrocatalyst achieves an NH3 yield rate of 12.13 µg h-1 mgcat.-1 and an optimal Faradaic efficiency of 13.4% at -0.6 V versus the reversible hydrogen electrode in 0.1 M Na2SO4. Density functional theory calculations reveal that the N2 molecule was reduced to NH3 at the Cu active site with an ideal overpotential. Meanwhile, the interaction between bonding and antibonding of the Cu-N bond promotes activation of N2 and maintains a low desorption barrier.

4.
ACS Appl Mater Interfaces ; 13(6): 7142-7151, 2021 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-33550806

RESUMEN

Nitrogen can be electrochemically reduced to produce ammonia, which supplies an energy-saving and environmental-benign route at room temperature, but high-efficiency catalysts are sought to reduce the reaction barrier. Here, iron-doped α-MoO3 nanosheets are thus designed and proposed as potential catalysts for fixing N2 to NH3. The α-MoO3 band structure is intentionally modulated by the iron doping, which narrows the band gap of α-MoO3 and turns the semiconductor into a metal-like catalyst. Oxygen vacancies, generated by substituting Mo6+ for Fe3+ anions, are beneficial for nitrogen adsorption at the active sites. In 0.1 M Na2SO4, the Fe-doped MoO3 catalyst reached a high faradaic efficiency of 13.3% and an excellent NH3 yield rate of 28.52 µg h-1 mgcat-1 at -0.7 V versus reversible hydrogen electrode, superior to most of the other metal-based catalysts. Theoretical calculations confirmed that the N2 reduction reaction at the Fe-MoO3 surface followed the distal reaction path.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA