RESUMEN
Far-red light exerts an important regulatory influence on plant growth and development. However, the mechanisms underlying far-red light regulation of morphogenesis and photosynthetic characteristics in blueberry plantlets in vitro have remained elusive. Here, physiological and transcriptomic analyses were conducted on blueberry plantlets in vitro supplemented with far-red light. The results indicated that supplementation with low far-red light, such as 6 µmol m-2 s-1 and 14 µmol m-2 s-1 far-red (6FR and 14FR) light treatments, significantly increased proliferation-related indicators, including shoot length, shoot number, gibberellin A3, and trans-zeatin riboside content. It was found that 6FR and 14 FR significantly reduced chlorophyll content in blueberry plantlets but enhanced electron transport rates. Weighted correlation network analysis (WGCNA) showed the enrichment of iron ion-related genes in modules associated with photosynthesis. Genes such as NAC, ABCG11, GASA1, and Erf74 were significantly enriched within the proliferation-related module. Taken together, we conclude that low far-red light can promote the proliferative capacity of blueberry plantlets in vitro by affecting hormone pathways and the formation of secondary cell walls, concurrently regulating chlorophyll content and iron ion homeostasis to affect photosynthetic capacity.
Asunto(s)
Arándanos Azules (Planta) , Luz Roja , Fotosíntesis , Clorofila , Hierro , Proliferación CelularRESUMEN
Tomato plants favor warmth, making them particularly susceptible to cold conditions, especially their reproductive development. Therefore, understanding how pollen reacts to cold stress is vital for selecting and improving cold-resistant tomato varieties. The programmed cell death (PCD) in the tapetum is particularly susceptible to cold temperatures which could hinder the degradation of the tapetal layer in the anthers, thus affecting pollen development. However, it is not clear yet how genes integral to tapetal degradation respond to cold stress. Here, we report that SlHB8, working upstream of the conserved genetic module DYT1-TDF1-AMS-MYB80, is crucial for regulating cold tolerance in tomato anthers. SlHB8 expression increases in the tapetum when exposed to low temperatures. CRISPR/Cas9-generated SlHB8-knockout mutants exhibit improved pollen cold tolerance due to the reduced temperature sensitivity of the tapetum. SlHB8 directly upregulates SlDYT1 and SlMYB80 by binding to their promoters. In normal anthers, cold treatment boosts SlHB8 levels, which then elevates the expression of genes like SlDYT1, SlTDF1, SlAMS, and SlMYB80; however, slhb8 mutants do not show this gene activation during cold stress, leading to a complete blockage of delayed tapetal programmed cell death (PCD). Furthermore, we found that SlHB8 can interact with both SlTDF1 and SlMYB80, suggesting the possibility that SlHB8 might regulate tapetal PCD at the protein level. This study sheds light on molecular mechanisms of anther adaptation to temperature fluctuations.
Asunto(s)
Frío , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Solanum lycopersicum/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética , Muerte Celular/genética , Flores/genética , Flores/crecimiento & desarrollo , Flores/fisiología , Polen/genética , Polen/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismoRESUMEN
The eggplant (Solanum melongena) is a popular vegetable around the world. However, the origin and evolution of eggplant has long been considered complex and unclear, which has become the barrier to improvements in eggplant breeding. Sequencing and comparative analyses of 13 complete chloroplast (cp) genomes of seven Solanum species were performed. Genome sizes were between 154,942 and 156,004 bp, the smallest genome was from S. torvum and the largest from S. macrocapon. Thirteen cp genomes showed highly conserved sequences and GC contents, particularly at the subgenus level. All genes in the 13 genomes were annotated. The cp genomes in this study comprised 130 genes (i.e., 80 protein-coding genes, 8 rRNA genes, and 42 tRNA genes), apart from S. sisymbriifolium, which had 129 (79 protein-coding genes, 8 rRNA genes, and 42 tRNA genes.). The rps16 was absent from the cp genome of S. sisymbriifolium, resulting in a nonsense mutation. Twelve hotspot regions of the cp genome were identified, which showed a series of sequence variations and differed significantly in the inverted repeat/single-copy boundary regions. Furthermore, phylogenetic analysis was conducted using 46 cp genomic sequences to determine interspecific genetic and phylogenetic relationships in Solanum species. All species formed two branches, one of which contained all cultivars of the subgenus Leptostemonum. The cp genome data and phylogenetic analysis provides molecular evidence revealing the origin and evolutionary relationships of S. melongena and its wild relatives. Our findings suggest precise intra- and interspecies relatedness within the subgenus Leptostemonum, which has positive implications for work on improvements in eggplant breeding, particularly in producing heterosis, expanding the source of species variation, and breeding new varieties.
RESUMEN
Deciphering drought resistance in crops is crucial for enhancing water productivity. Previous studies have highlighted the significant role of the transcription factor SlHB8 in regulating developmental processes in tomato plants but its involvement in drought resistance remains unclear. Here, gene overexpression (SlHB8-OE) and gene knockout (slhb8) tomato plants were utilized to study the role of SlHB8 in regulating drought resistance. Our findings showed that slhb8 plants exhibited a robust resistant phenotype under drought stress conditions. The stomata of slhb8 tomato leaves displayed significant closure, effectively mitigating the adverse effects of drought stress on photosynthetic efficiency. The slhb8 plants exhibited a decrease in oxidative damage and a substantial increase in antioxidant enzyme activity. Moreover, slhb8 effectively alleviated the degree of photoinhibition and chloroplast damage caused by drought stress. SlHB8 regulates the expression of numerous genes related to photosynthesis (such as SlPSAN, SlPSAL, SlPSBP, and SlTIC62) and stress signal transduction (such as SlCIPK25, SlABA4, and SlJA2) in response to drought stress. Additionally, slhb8 plants exhibited enhanced water absorption capacity and upregulated expression of several aquaporin genes including SlPIP1;3, SlPIP2;6, SlTIP3;1, SlNIP1;2, and SlXIP1;1. Collectively, our findings suggest that SlHB8 plays a negative regulatory role in the drought resistance of tomato plants.
Asunto(s)
Resistencia a la Sequía , Solanum lycopersicum , Solanum lycopersicum/genética , Estrés Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotosíntesis/genética , Sequías , Agua/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Antioxidantes/metabolismo , Regulación de la Expresión Génica de las PlantasRESUMEN
Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is a widely consumed vegetable in southern China with significant economic value. Developing product organs in the flowering Chinese cabbage involves two key processes: bolting and flowering. Nuclear factor Y (NF-Y) is a heterotrimeric transcription factor known for its crucial role in various plant developmental processes. However, there is limited information available on the involvement of this gene family during flowering during Chinese cabbage development. In this study, 49 BcNF-Y genes were identified and characterized along with their physicochemical properties, gene structure, chromosomal location, collinearity, and expression patterns. We also conducted subcellular localization, yeast two-hybrid, and transcriptional activity assays on selected BcNF-Y genes. The findings of this study revealed enhanced expression levels of specific BcNF-Y genes during the stalk development and flowering stages in flowering Chinese cabbage. Notably, BcNF-YA8, BcNF-YB14, BcNF-YB20, and BcNF-YC5 interacted with BcRGA1, a negative regulator of GA signaling, indicating their potential involvement in GA-mediated stalk development. This study provides valuable insights into the role of BcNF-Y genes in flowering Chinese cabbage development and suggests that they are potential candidates for further investigating the key regulators of cabbage bolting and flowering.
RESUMEN
Flowering Chinese cabbage is one of the most economically important stalk vegetables. However, the molecular mechanisms underlying bolting, which is directly related to stalk quality and yield, in this species remain unknown. Previously, we examined five key stem development stages in flowering Chinese cabbage. Here, we identified a gene, BcSOC1 (SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1), in flowering Chinese cabbage using transcriptome analysis, whose expression was positively correlated with bolting. Exogenous gibberellin (GA3) and low-temperature treatments significantly upregulated BcSOC1 and promoted early bolting and flowering. Additionally, BcSOC1 overexpression accelerated early flowering and stem elongation in both Arabidopsis and flowering Chinese cabbage, whereas its knockdown dramatically delayed bolting and flowering and inhibited stem elongation in the latter; the inhibition of stem elongation was more notable than delayed flowering. BcSOC1 overexpression also induced cell expansion by upregulating genes encoding cell wall structural proteins, such as BcEXPA11 (cell wall structural proteins and enzymes) and BcXTH3 (xyloglucan endotransglycosidase/hydrolase), upon exogenous GA3 and low-temperature treatments. Moreover, the length of pith cells was correlated with stem height, and BcSOC1 interacted with BcAGL6 (AGAMOUS-LIKE 6) and BcAGL24 (AGAMOUS-LIKE 24). Thus, BcSOC1 plays a vital role in bolting and stem elongation of flowering Chinese cabbage and may play a novel role in regulating stalk development, apart from the conserved function of Arabidopsis SOC1 in flowering alone.
Asunto(s)
Arabidopsis , Brassica , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica/metabolismo , China , Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Flowering Chinese cabbage (Brassica campestris L. ssp. Chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, whose major food product is the stalk. In the process of stalk formation, its initiation and development are regulated by a series of hormonal signals, such as cytokinin and gibberellin. In this study, we analyzed the effects of zeatin (ZT) and gibberellin A3 (GA3), and their interaction, on the bolting of flowering Chinese cabbage. The results indicated that the three-true-leaf spraying of ZT and GA synthesis inhibitor (PAC) inhibited plant height but increased stem diameter. Cytokinin (CTK) synthesis inhibitor (YZJ) and GA3 treatment increased plant height and decreased stem diameter. In addition, ZT and GA3 co-treated plants displayed antagonistic effect. Further, 19 type-B authentic response regulators (ARR-Bs), the positive regulators of cytokinin signal transduction were identified from flowering Chinese cabbage. Comprehensive analysis of phylogeny showed BcARR-Bs clustered into three subfamilies with 10 conserved motifs. Analysis of their expression patterns in different tissues and at various growth stage, and their response to hormone treatment suggest that ARR1-b localized in the nucleus displayed unique highest expression patterns in stem tips, are responsive both to ZT and GA, suggesting a significant role in mediating the crosstalk of ZT and GA in the bolting of flowering Chinese cabbage.
Asunto(s)
Brassica , Citocininas , Brassica/metabolismo , Citocininas/metabolismo , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Filogenia , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Melatonin (MT) and nitric oxide (NO) in plants can function cooperatively to alleviate salt stress, sodic alkaline stress and immune response, as well as adventitious root formation. The interaction of MT and NO on the nitrate stress tolerance of cucumber seedlings are not well understood. We investigated the effects of exogenous MT, NO donor (SNP) and NO scavenger (cPTIO) on the growth; photosynthesis; characteristics of root morphological; accumulation of mineral elements, endogenous NO, MT, IAA and ABA; and related genes expression in cucumber (Cucumis sativus L. "Jin You No. 1") seedlings grown under high nitrate condition (HN). The results showed that MT and NO independently alleviated the inhibition of growth and photosynthesis capacity of cucumber seedlings under nitrate stress. NO was required for MT to enhance the root activity, root length, lateral root number and the accumulation of calcium, magnesium and iron in the roots of cucumber seedlings grown under nitrate stress. Consistently, the expression of adventitious rootless 1 gene (CsARL1) was modulated. Furthermore, exogenous MT induced accumulation of endogenous MT, NO, indole-3-acetic acid (IAA) and abscisic acid (ABA), mainly within 24 h after treatment, in which MT and NO were further increased at 48 h and 96 h, IAA and ABA were further increased at 16 h in the presence of SNP. In contrast, the accumulation of endogenous IAA, MT and ABA slightly decreased within 24 h, NO significantly decreased at 192 h in the presence of cPTIO. Correspondingly, the expression levels of genes involved in nitrogen metabolism (CsNR1 and CsNR2), MT metabolism (CsT5H, CsSNAT2 and Cs2-ODD33), auxin carriers and response factors (CsAUX1, CsGH3.5, CsARF17), ABA synthesis and catabolism (CsNCED1, CsNCED3 and CsCYP707A1) were upregulated by MT, in which CsNR1, CsNR2, CsAUX1, CsNCED3 and CsT5H were further induced in the presence of SNP in roots of cucumber seedlings. These observations indicated that NO act as a crucial factor in MT, alleviating nitrate stress through regulating the mechanism of root growth in cucumber seedlings.
Asunto(s)
Cucumis sativus , Melatonina , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Benzoatos , Calcio/metabolismo , Imidazoles , Ácidos Indolacéticos/metabolismo , Hierro/metabolismo , Magnesio/farmacología , Melatonina/farmacología , Minerales/metabolismo , Nitratos/metabolismo , Nitratos/farmacología , Óxido Nítrico/metabolismo , Nitrógeno/metabolismo , Raíces de Plantas/metabolismo , PlantonesRESUMEN
Malformed fruits depreciate a plant's market value. In tomato (Solanum lycopersicum), fruit malformation is associated with the multi-locule trait, which involves genes regulating shoot apical meristem (SAM) development. The expression pattern of TOPLESS3 (SlTPL3) throughout SAM development prompted us to investigate its functional significance via RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. Lower SlTPL3 transcript levels resulted in larger fruits with more locules and larger SAMs at the 5 d after germination (DAG5) stage. Differentially expressed genes in the SAM of wild-type (WT) and SlTPL3-RNAi plants, identified by transcriptome deep sequencing (RNA-seq), were enriched in the gibberellin (GA) biosynthesis and plant hormone signaling pathways. Moreover, exogenous auxin and paclobutrazol treatments rescued the multi-locule phenotype, indicating that SlTPL3 affects SAM size by mediating auxin and GA levels in the SAM. Furthermore, SlTPL3 interacted with WUSCHEL (SlWUS), which plays an important role in SAM size maintenance. We conducted RNA-seq and DNA affinity purification followed by sequencing (DAP-seq) analyses to identify the genes regulated by SlTPL3 and SlWUS in the SAM and to determine how they regulate SAM size. We detected 24 overlapping genes regulated by SlTPL3 and SlWUS and harboring an SlWUS-binding motif in their promoters. Furthermore, functional annotation revealed a notable enrichment for functions in auxin transport, auxin signal transduction, and GA biosynthesis. Dual-luciferase assays also revealed that SlTPL3 enhances SlWUS-mediated regulation (repression and activation) of SlPIN3 and SlGA2ox4 transcription, indicating that the SlTPL3-SlWUS module regulates SAM size by mediating auxin distribution and GA levels, and perturbations of this module result in enlarged SAM. These results provide novel insights into the molecular mechanism of SAM maintenance and locule formation in tomato and highlight the SlTPL3-SlWUS module as a key regulator.
Asunto(s)
Meristema , Solanum lycopersicum , Meristema/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Supplemental blue/red lighting accelerated fruit coloring and promoted lycopene synthesis in tomato fruits. Potassium (K) is the most enriched cation in tomato fruits, and its fertigation improved tomato yield and fruit color. However, the effects of supplemental lighting on K uptake and transport by tomatoes and whether supplemental lighting accelerates fruit coloring through enhancing K uptake and transport are still unclear. We investigated the effects of supplemental light-emitting diode (LED) lighting (SL; 100% red, 100% blue; 75% red combined 25% blue) on K uptake in roots and transport in the fruits as well as the fruit coloring of tomatoes (Micro-Tom) grown in an experimental greenhouse in hydroponics. The use of red SL or red combined blue SL enhanced K uptake and K accumulation as well as carotenoid (phytoene, lycopene, γ-carotene, and ß-carotene) content in fruits by increasing photosynthesis, plant growth, and fruit weight. The genes related to ethylene signaling were upregulated by red SL. Quantitative real-time PCR (qRT-PCR) results showed that K transporter genes (SlHAKs) are differentially expressed during fruit development and ripening. The highest-expressed gene was SlHAK10 when fruit reached breaker and ripening. SlHAK3 and SlHAK19 were highly expressed at breaker, and SlHAK18 was highly expressed at ripening. These might be related to the formation of tomato fruit ripening and quality. SlHAK4, SlHAK6, SlHAK8, and SlHAK9 were significantly downregulated with fruit ripening and induced by low K. The expression level of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 were significantly increased by blue SL or red combined blue SL during breaker and ripening. Blue SL or red combined blue SL increased content of phytoene, ß-carotene, α-carotene, and γ-carotene and accelerated fruit coloring by enhancing K uptake in roots and transport in fruits during fruit ripening. This was consistent with the expression level of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 during fruit development and ripening. The key genes of photoreceptors, light signaling transcript factors as well as abscisic acid (ABA) transduction induced by blue SL or red combined blue SL were consistent with the upregulated genes of SlHAK6, SlHAK10, SlHAK15, and SlHAK19 under blue SL and red combined blue SL. The K transport in tomato fruits might be mediated by light signaling and ABA signaling transduction. These results provide valuable information for fruit quality control and the light regulating mechanism of K transport and fruit coloring in tomatoes.
Asunto(s)
Frutas/fisiología , Fototransducción/genética , Proteínas de Plantas/genética , Potasio/metabolismo , Solanum lycopersicum/fisiología , Transporte Biológico , Carotenoides/metabolismo , Clorofila/metabolismo , Frutas/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Hidroponía/métodos , Iluminación , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Pigmentación , Canales de Potasio/genéticaRESUMEN
Flowering Chinese cabbage (Brassica campestris L. ssp. chinensis var. utilis Tsen et Lee) is an important and extensively cultivated vegetable in south China, and its stalk development is mainly regulated by gibberellin (GA). DELLA proteins negatively regulate GA signal transduction and may play an important role in determining bolting and flowering. Nevertheless, no systematic study of the DELLA gene family has been undertaken in flowering Chinese cabbage. In the present study, we found that the two-true-leaf spraying of gibberellin A3 (GA3) did not promote bolting but did promote flowering, whereas the three-true-leaf spraying of GA3 promoted both bolting and flowering. In addition, we identified five DELLA genes in flowering Chinese cabbage. All five proteins contained DELLA, VHYNP, VHIID, and SAW conserved domains. Protein-protein interaction results showed that in the presence of GA3, all five DELLA proteins interacted with BcGID1b (GA-INSENSITIVE DWARF 1b) but not with BcGID1a (GA-INSENSITIVE DWARF 1a) or BcGID1c (GA-INSENSITIVE DWARF 1c). Their expression analysis showed that the DELLA genes exhibited tissue-specific expression, and their reversible expression profiles responded to exogenous GA3 depending on the treatment stage. We also found that the DELLA genes showed distinct expression patterns in the two varieties of flowering Chinese cabbage. BcRGL1 may play a major role in the early bud differentiation process of different varieties, affecting bolting and flowering. Taken together, these results provide a theoretical basis for further dissecting the DELLA regulatory mechanism in the bolting and flowering of flowering Chinese cabbage.
Asunto(s)
Brassica/genética , Flores/genética , Giberelinas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Brassica/crecimiento & desarrollo , China , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Familia de Multigenes/genética , Hojas de la Planta/genética , Receptores de Superficie Celular/genéticaRESUMEN
Auxin response factors (ARFs) play important roles in various plant physiological processes; however, knowledge of the exact role of ARFs in plant responses to water deficit is limited. In this study, SlARF4, a member of the ARF family, was functionally characterized under water deficit. Real-time fluorescence quantitative polymerase chain reaction (PCR) and ß-glucuronidase (GUS) staining showed that water deficit and abscisic acid (ABA) treatment reduced the expression of SlARF4. SlARF4 was expressed in the vascular bundles and guard cells of tomato stomata. Loss of function of SlARF4 (arf4) by using Clustered Regularly Interspaced Short Palindromic Repeats/Cas 9 (CRISPR/Cas 9) technology enhanced plant resistance to water stress and rehydration ability. The arf4 mutant plants exhibited curly leaves and a thick stem. Malondialdehyde content was significantly lower in arf4 mutants than in wildtype plants under water stress; furthermore, arf4 mutants showed higher content of antioxidant substances, superoxide dismutase, actual photochemical efficiency of photosystem II (PSII), and catalase activities. Stomatal and vascular bundle morphology was changed in arf4 mutants. We identified 628 differentially expressed genes specifically expressed under water deficit in arf4 mutants; six of these genes, including ABA signaling pathway-related genes, were differentially expressed between the wildtype and arf4 mutants under water deficit and unlimited water supply. Auxin responsive element (AuxRE) elements were found in these genes' promoters indicating that SlARF4 participates in ABA signaling pathways by regulating the expression of SlABI5/ABF and SCL3, thereby influencing stomatal morphology and vascular bundle development and ultimately improving plant resistance to water deficit.
Asunto(s)
Sequías , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Factores de Transcripción/genética , Ácido Abscísico/química , Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/genética , Sistemas CRISPR-Cas , Clorofila/química , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Glucuronidasa/metabolismo , Malondialdehído/química , Mutación , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Estomas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , RNA-Seq , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal , Factores de Transcripción/metabolismo , Transcriptoma , Agua/metabolismoRESUMEN
The stem is an important organ in supporting plant body, transporting nutrients and communicating signals for plant growing. However, studies on the regulation of stem development in tomato are rather limited. In our study, we demonstrated that SlHB8 negatively regulated tomato stem development. SlHB8 belongs to homeo domain-leucine zipper Class III gene family transcription factors and expressed in all the organs examined including root, stem, leaves, flower, and fruit. Among these tissues, SlHB8 showed stable high expression level during tomato stem development. Overexpression of SlHB8 gene decreased stem diameter with inhibited xylem width and xylem cell layers, while loss of function of SlHB8gene increased the stem diameter and xylem width. The contents of lignin were decreased both in leaves and stems of SlHB8 overexpression plants. RNA-seq analysis on the stems of wild type and SlHB8 transgenic plants showed that the 116 DEGs (differential expressed genes) with reversible expression profiles in SlHB8-ox and SlHB8-cr plants were significantly enriched in the phenylpropanoid biosynthesis pathway and plant-pathogen pathway which were related to lignin biosynthesis and disease resistance. Meanwhile, the key genes involved in the lignin biosynthesis pathway such as SlCCR (cinnamoyl-CoA reductase), SlCYP73A14/C4H (cinnamate 4-hydroxylase), SlC3H (coumarate 3-hydroxylase) and SlCAD (cinnamoyl alcohol dehydrogenase) were down-regulated in both stem and leaves of SlHB8 overexpression plants, indicating a negative regulatory role of SlHB8 in the lignin biosynthesis and stem development.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina/biosíntesis , Proteínas de Plantas/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Solanum lycopersicum/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Leucina Zippers , Lignina/genética , Solanum lycopersicum/genética , Proteínas de Plantas/genética , Tallos de la Planta/genética , Factores de Transcripción/genéticaRESUMEN
Choy Sum, a stalk vegetable highly valued in East and Southeast Asia, is characterized by its rich flavor and nutritional profile. Metabolite accumulation is a key factor in Choy Sum stalk development; however, no research has focused on metabolic changes during the development of Choy Sum, especially in shoot tip metabolites, and their effects on growth and flowering. Therefore, in the present study, we used a widely targeted metabolomic approach to analyze metabolites in Choy Sum stalks at the seedling (S1), bolting (S3), and flowering (S5) stages. In total, we identified 493 metabolites in 31 chemical categories across all three developmental stages. We found that the levels of most carbohydrates and amino acids increased during stalk development and peaked at S5. Moreover, the accumulation of amino acids and their metabolites was closely related to G6P, whereas the expression of flowering genes was closely related to the content of T6P, which may promote flowering by upregulating the expressions of BcSOC1, BcAP1, and BcSPL5. The results of this study contribute to our understanding of the relationship between the accumulation of stem tip substances during development and flowering and of the regulatory mechanisms of stalk development in Choy Sum and other related species.
Asunto(s)
Brassica , Flores , Regulación de la Expresión Génica de las Plantas , Brassica/química , Brassica/genética , Brassica/crecimiento & desarrollo , Brassica/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Metaboloma , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Transcriptoma , Carbohidratos , Proteínas de Plantas/genética , Glucosa-6-Fosfato/metabolismo , Genes de PlantasRESUMEN
Cadmium (Cd) pollution threatens plant physiological and biochemical activities and crop production. Significant progress has been made in characterizing how nanoparticles affect Cd stress tolerance; however, the molecular mechanism of nZVI nanoparticles in Cd stress remains largely uncharacterized. Plants treated with nZVI and exposed to Cd had increased antioxidant capacity and reduced Cd accumulation in plant tissues. The nZVI treatment differentially affected the expression of genes involved in plant environmental responses, including those associated with the ERF transcription factor. SlEFR1 was upregulated by Cd stress in nZVI-treated plants when compared with the control and the predicted protein-protein interactions suggested SlERF1 interacts with proteins associated with plant hormone signaling pathway and related to stress. Yeast overexpressing SlEFR1 grew faster after Cd exposure and significantly had higher Cd stress tolerance when compared with empty vector controls. These results suggest that nZVI induces Cd stress tolerance by activating SlERF1 expression to improve plant growth and nutrient accumulation. Our study reveals the molecular mechanism of Cd stress tolerance for improved plant growth and will support new research on overcoming Cd stress and improving vegetable crop production.
Asunto(s)
Nanopartículas , Solanum lycopersicum , Cadmio/toxicidad , Cadmio/química , Hierro/química , Solanum lycopersicum/genética , Antioxidantes/metabolismoRESUMEN
Parthenocarpic fruits, known for their superior taste and reliable yields in adverse conditions, develop without the need for fertilization or pollination. Exploring the physiological and molecular mechanisms behind parthenocarpic fruit development holds both theoretical and practical significance, making it a crucial area of study. This review examines how plant hormones and MADS-box transcription factors control parthenocarpic fruit formation. It delves into various aspects of plant hormones-including auxin, gibberellic acid, cytokinins, ethylene, and abscisic acid-ranging from external application to biosynthesis, metabolism, signaling pathways, and their interplay in influencing parthenocarpic fruit development. The review also explores the involvement of MADS family gene functions in these processes. Lastly, we highlight existing knowledge gaps and propose directions for future research on parthenocarpy.
RESUMEN
In flowering Chinese cabbage, early booting is one of the most important characteristics that is linked with quality and production. Through fixed light intensity (280 µmol·m-2·s-1) and fixed intermittent lighting in flowering Chinese cabbage, there was early bolting, bud emergence, and flowering. Moreover, the aboveground fresh weight, blade area, dry weight of blade, and quantification of the leaves in flowering Chinese cabbage were significantly reduced, while the thickness of tillers, tillers height, dry weight of tillers, and tillers weight were significantly increased. The chlorophyll contents and soil-plant analysis and development (SPAD) value decreased in the early stage and increased in the later stage. The nitrate content decreased, while the photosynthetic rate, vitamin C content, soluble sugar content, soluble protein content, phenolic content, and flavonoid content increased, and mineral elements also accumulated. In order to explore the mechanism of intermittent light promoting the early bolting and flowering of '49d' flowering Chinese cabbage, this study analyzed the transcriptional regulation from a global perspective using RNA sequencing. A total of 17,086 differentially expressed genes (DEGs) were obtained and 396 DEGs were selected that were closely related to early bolting. These DEGs were mainly involved in pollen wall assembly and plant circadian rhythm pathways, light action (34 DEGs), hormone biosynthesis and regulation (26 DEGs), development (21 DEGs), and carbohydrate synthesis and transport (6 DEGs). Three hub genes with the highest connectivity were identified through weighted gene co-expression network analysis (WGCNA): BrRVE, BrLHY, and BrRVE1. It is speculated that they may be involved in the intermittent light regulation of early bolting in flowering Chinese cabbage. In conclusion, intermittent light can be used as a useful tool to regulate plant growth structure, increase planting density, enhance photosynthesis, increase mineral accumulation, accelerate growth, and shorten the breeding cycle.
RESUMEN
Glycoside hydrolases (GHs), enzymes that break down glycosidic bonds in carbohydrates and between carbohydrates and non-carbohydrates, are prevalent in plants, animals, microorganisms, and other organisms. The tomato is a significant crop that contains the GH17 gene family. However, its role in tomatoes has yet to be fully investigated. In this study, we identified 43 GH17 genes from the tomato genome, distributed unevenly across 12 chromosomes. We further analyzed their gene structure, phylogenetic relationships, promoter elements, and expression patterns. The promoter element analysis indicated their potential roles in response to biotic and abiotic stresses as well as phytohormone effects on growth and development. The expression studies across different tomato tissues revealed that 10 genes were specifically expressed in floral organs, with SlA6 prominently expressed early during bud formation. By using CRISPR/Cas9 gene-editing technology, SlA6 knockout plants were generated. Phenotypic characterization showed that pollen viability, pollen tube germination, fruit weight, and seed number were significantly reduced in the Sla6 mutant, but the soluble solids content (TSS) was significantly higher in the Sla6 mutant, suggesting that SlA6 affects pollen development and fruit quality.
RESUMEN
The adaptations of root morphology, physiology, and biochemistry to phosphorus supply have been characterized intensively. However, characterizing these adaptations at molecular level is largely neglected under field conditions. Here, two consecutive field experiments were carried out to investigate the agronomic traits and root traits of wheat (Triticum aestivum L.) at six P-fertilizer rates. Root samples were collected at flowering to investigate root dry weight, root length density, arbusular-mycorrhizal colonization rate, acid phosphatase activity in rhizosphere soil, and expression levels of genes encoding phosphate transporter, phosphatase, ribonucleases, and expansin. These root traits exhibited inducible, inhibitory, or combined responses to P deficiency, and the change point for responses to P supply was at or near the optimal P supply for maximum grain yield. This research improves the understanding of mechanisms of plant adaptation to soil P in intensive agriculture and provides useful information for optimizing P management based on the interactions between soil P dynamics and root processes.
Asunto(s)
Fósforo/farmacología , Raíces de Plantas/anatomía & histología , Raíces de Plantas/genética , Triticum/anatomía & histología , Triticum/genética , Biomasa , Flores/efectos de los fármacos , Flores/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Fósforo/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Brotes de la Planta/metabolismo , Suelo , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrolloRESUMEN
The escalating impact of global warming on crop yield and quality poses a significant threat to future food supplies. Breeding heat-resistant crop varieties holds promise, but necessitates a deeper understanding of the molecular mechanisms underlying plant heat tolerance. Recent studies have shed light on the initial events of heat perception in plants. In this review, we provide a comprehensive summary of the recent progress made in unraveling the mechanisms of heat perception and response in plants. Calcium ion (Ca2+), hydrogen peroxide (H2O2), and nitric oxide (NO) have emerged as key participants in heat perception. Furthermore, we discuss the potential roles of the NAC transcription factor NTL3, thermo-tolerance 3.1 (TT3.1), and Target of temperature 3 (TOT3) as thermosensors associated with the plasma membrane. Additionally, we explore the involvement of cytoplasmic HISTONE DEACETYLASE 9 (HDA9), mRNA encoding the phytochrome-interacting factor 7 (PIF7), and chloroplasts in mediating heat perception. This review also highlights the role of intranuclear transcriptional condensates formed by phytochrome B (phyB), EARLY FLOWERING 3 (ELF3), and guanylate-binding protein (GBP)-like GTPase 3 (GBPL3) in heat perception. Finally, we raise the unresolved questions in the field of heat perception that require further investigation in the future.