Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Angew Chem Int Ed Engl ; : e202409372, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38923186

RESUMEN

Ge4+ substitution into the recently discovered superionic conductor Li7Si2S7I is demonstrated by synthesis of Li7Si2-xGexS7I, where x≤1.2. The anion packing and tetrahedral silicon location of Li7Si2S7I are retained upon substitution. Single crystal X-ray diffraction shows that substitution of larger Ge4+ for Si4+ expands the unit cell volume and further increases Li+ site disorder, such that Li7Si0.88Ge1.12S7I has one Li+ site more (sixteen in total) than Li7Si2S7I. The ionic conductivity of Li7Si0.8Ge1.2S7I (x=1.2) at 303 K is 1.02(3)×10-2 S cm-1 with low activation energies for Li+ transport demonstrated over a wide temperature range by AC impedance and 7Li NMR spectroscopy. All sixteen Li+ sites remain occupied to temperatures as low as 30 K in Li7Si0.88Ge1.12S7I as a result of the structural expansion. This differs from Li7Si2S7I, where the partial Li+ site ordering observed below room temperature reduces the ionic conductivity. The suppression of Li+ site depopulation by Ge4+ substitution retains the high mobility to temperatures as low as 200 K, yielding low temperature performance comparable with state-of-the-art Li+ ion conducting materials.

2.
Angew Chem Int Ed Engl ; 63(18): e202400837, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38446007

RESUMEN

Magnesium batteries attract interest as alternative energy-storage devices because of elemental abundance and potential for high energy density. Development is limited by the absence of suitable cathodes, associated with poor diffusion kinetics resulting from strong interactions between Mg2+ and the host structure. V2PS10 is reported as a positive electrode material for rechargeable magnesium batteries. Cyclable capacity of 100 mAh g-1 is achieved with fast Mg2+ diffusion of 7.2 × ${\times }$ 10-11-4 × ${\times }$ 10-14 cm2 s-1. The fast insertion mechanism results from combined cationic redox on the V site and anionic redox on the (S2)2- site; enabled by reversible cleavage of S-S bonds, identified by X-ray photoelectron and X-ray absorption spectroscopy. Detailed structural characterisation with maximum entropy method analysis, supported by density functional theory and projected density of states analysis, reveals that the sulphur species involved in anion redox are not connected to the transition metal centres, spatially separating the two redox processes. This facilitates fast and reversible Mg insertion in which the nature of the redox process depends on the cation insertion site, creating a synergy between the occupancy of specific Mg sites and the location of the electrons transferred.

3.
J Am Chem Soc ; 144(48): 22178-22192, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36413810

RESUMEN

Argyrodite is a key structure type for ion-transporting materials. Oxide argyrodites are largely unexplored despite sulfide argyrodites being a leading family of solid-state lithium-ion conductors, in which the control of lithium distribution over a wide range of available sites strongly influences the conductivity. We present a new cubic Li-rich (>6 Li+ per formula unit) oxide argyrodite Li7SiO5Cl that crystallizes with an ordered cubic (P213) structure at room temperature, undergoing a transition at 473 K to a Li+ site disordered F4̅3m structure, consistent with the symmetry adopted by superionic sulfide argyrodites. Four different Li+ sites are occupied in Li7SiO5Cl (T5, T5a, T3, and T4), the combination of which is previously unreported for Li-containing argyrodites. The disordered F4̅3m structure is stabilized to room temperature via substitution of Si4+ with P5+ in Li6+xP1-xSixO5Cl (0.3 < x < 0.85) solid solution. The resulting delocalization of Li+ sites leads to a maximum ionic conductivity of 1.82(1) × 10-6 S cm-1 at x = 0.75, which is 3 orders of magnitude higher than the conductivities reported previously for oxide argyrodites. The variation of ionic conductivity with composition in Li6+xP1-xSixO5Cl is directly connected to structural changes occurring within the Li+ sublattice. These materials present superior atmospheric stability over analogous sulfide argyrodites and are stable against Li metal. The ability to control the ionic conductivity through structure and composition emphasizes the advances that can be made with further research in the open field of oxide argyrodites.

4.
J Am Chem Soc ; 143(43): 18216-18232, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34677973

RESUMEN

Extended anionic frameworks based on condensation of polyhedral main group non-metal anions offer a wide range of structure types. Despite the widespread chemistry and earth abundance of phosphates and silicates, there are no reports of extended ultraphosphate anions with lithium. We describe the lithium ultraphosphates Li3P5O14 and Li4P6O17 based on extended layers and chains of phosphate, respectively. Li3P5O14 presents a complex structure containing infinite ultraphosphate layers with 12-membered rings that are stacked alternately with lithium polyhedral layers. Two distinct vacant tetrahedral sites were identified at the end of two distinct finite Li6O1626- chains. Li4P6O17 features a new type of loop-branched chain defined by six PO43- tetrahedra. The ionic conductivities and electrochemical properties of Li3P5O14 were examined by impedance spectroscopy combined with DC polarization, NMR spectroscopy, and galvanostatic plating/stripping measurements. The structure of Li3P5O14 enables three-dimensional lithium migration that affords the highest ionic conductivity (8.5(5) × 10-7 S cm-1 at room temperature for bulk), comparable to that of commercialized LiPON glass thin film electrolytes, and lowest activation energy (0.43(7) eV) among all reported ternary Li-P-O phases. Both new lithium ultraphosphates are predicted to have high thermodynamic stability against oxidation, especially Li3P5O14, which is predicted to be stable to 4.8 V, significantly higher than that of LiPON and other solid electrolytes. The condensed phosphate units defining these ultraphosphate structures offer a new route to optimize the interplay of conductivity and electrochemical stability required, for example, in cathode coatings for lithium ion batteries.

5.
Inorg Chem ; 60(18): 14083-14095, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34463491

RESUMEN

We report a new polymorph of lithium aluminum pyrophosphate, LiAlP2O7, discovered through a computationally guided synthetic exploration of the Li-Mg-Al-P-O phase field. The new polymorph formed at 973 K, and the crystal structure, solved by single-crystal X-ray diffraction, adopts the orthorhombic space group Cmcm with a = 5.1140(9) Å, b = 8.2042(13) Å, c = 11.565(3) Å, and V = 485.22(17) Å3. It has a three-dimensional framework structure that is different from that found in other LiMIIIP2O7 materials. It transforms to the known monoclinic form (space group P21) above ∼1023 K. Density functional theory (DFT) calculations show that the new polymorph is the most stable low-temperature structure for this composition among the seven known structure types in the AIMIIIP2O7 (A = alkali metal) families. Although the bulk Li-ion conductivity is low, as determined from alternating-current impedance spectroscopy and variable-temperature static 7Li NMR spectra, a detailed analysis of the topologies of all seven structure types through bond-valence-sum mapping suggests a potential avenue for enhancing the conductivity. The new polymorph exhibits long (>4 Å) Li-Li distances, no Li vacancies, and an absence of Li pathways in the c direction, features that could contribute to the observed low Li-ion conductivity. In contrast, we found favorable Li-site topologies that could support long-range Li migration for two structure types with modest DFT total energies relative to the new polymorph. These promising structure types could possibly be accessed from innovative doping of the new polymorph.

6.
Undersea Hyperb Med ; 48(4): 417-423, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34847305

RESUMEN

This study aimed to compare the efficacy of two commonly used therapeutic pressures, 2.0 atmospheres absolute (ATA) versus 2.2 ATA, applied in hyperbaric oxygen (HBO2) therapy for sudden sensorineural hearing loss (SSNHL). We retrospectively reviewed the clinical records of 160 SSNHL patients treated by typical therapy or additional HBO2 therapy with pressure 2.0 or 2.2 ATA at Yijishan Hospital, the First Affiliated Hospital of Wannan Medical College, from February 2018 to May 2020. The pure-tone threshold audiometry results pre- and post-treatment were compared across three groups. In the range of frequencies 250-500 Hz, P2.0 (20.92±26.11 dB, p=0.047) and P2.2 group (20.47±±21.54 dB, p=0.012) both acquired higher hearing gain compared to the control group (11.94±23.32 dB). While in the range of frequencies 1,000-2,000 Hz, only the P2.2 group showed significant improvement of the hearing gain compared to the control group (19.70±21.13 dB vs.10.56±25.24 dB, p=0.015). In the range of frequencies 4,000-8,000, both the P2.0 and P2.2 groups failed to reach the desired effect. Our results suggest that the therapeutic effect is associated with HBO2 therapeutic pressure when applying HBO2 treatment combined with standard medical therapy. Within the range of appropriate pressure, the higher pressure, which means higher partial pressure of oxygen, has better therapeutic efficacy for SSNHL.


Asunto(s)
Pérdida Auditiva Sensorineural , Pérdida Auditiva Súbita , Audiometría de Tonos Puros , Pérdida Auditiva Sensorineural/terapia , Pérdida Auditiva Súbita/terapia , Humanos , Oxígeno , Estudios Retrospectivos , Resultado del Tratamiento
7.
Phys Chem Chem Phys ; 18(11): 7695-701, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-26907961

RESUMEN

Cation-disordered oxides have recently shown promising properties on the way to explore high-performance intercalation cathode materials for rechargeable Li-ion batteries. Here, stoichiometric cation-disordered Li2FeVyTi1-yO4 (y = 0, 0.2, 0.5) nanoparticles are studied. The substitution of V for Ti in Li2FeVyTi1-yO4 increases the content of active transition metals (Fe and V) and accordingly the amount of Li(+) (about (1 + y)Li(+) capacity per formula unit) that can be reversibly intercalated. It is found that Fe(3+)/Fe(2+) and V(4+)/V(3+) redox couples contribute to the overall capacity performance, whereas Ti(4+) remains mainly inert. There is no evidence for the presence of Fe(4+) species after charging to 4.8 V, as confirmed from the ex situ(57)Fe Mössbauer spectroscopy and the Fe K-edge absorption spectra. The redox couple reactions for iron and vanadium are examined by performing in situ synchrotron X-ray absorption spectroscopy. During charging/discharging, the spectral evolution of the K-edges for Fe and V confirms the reversible Fe(3+)/Fe(2+) and V(4+)/V(3+) redox reactions during cycling between 1.5 and 4.8 V.

8.
Phys Chem Chem Phys ; 17(26): 17288-95, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26073634

RESUMEN

Mixed-anion materials for Li-ion batteries have been attracting attention in view of their tunable electrochemical properties. Herein, we compare two isostructural (Fm3̅m) model intercalation materials Li2VO3 and Li2VO2F with O(2-) and mixed O(2-)/F(-) anions, respectively. Synchrotron X-ray diffraction and pair distribution function data confirm large structural similarity over long-range and at the atomic scale for these materials. However, they show distinct electrochemical properties and kinetic behaviour arising from the different anion environments and the consequent difference in cationic electrostatic repulsion. In comparison with Li2VO3 with an active V(4+/5+) redox reaction, the material Li2VO2F with oxofluoro anions and the partial activity of V(3+/5+) redox reaction favor higher theoretical capacity (460 mA h g(-1)vs. 230 mA h g(-1)), higher voltage (2.5 V vs. 2.2 V), lower polarization (0.1 V vs. 0.3 V) and faster Li(+) chemical diffusion (∼10(-9) cm(2) s(-1)vs. ∼10(-11) cm(2) s(-1)). This work not only provides insights into the understanding of anion chemistry, but also suggests the rational design of new mixed-anion battery materials.

9.
Phys Chem Chem Phys ; 17(2): 1482-8, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25431932

RESUMEN

Intercalation pseudocapacitive Li(+) storage has been recognized recently in metal oxide materials, wherein Li(+) intercalation into the lattice is not solid-state diffusion-limited. This may bridge the performance gap between electrochemical capacitors and battery materials. To date, only a few materials with desired crystal structure and with well-defined nanoarchitectures have been found to exhibit such attractive behaviour. Herein, we report for the first time that nanoscale spinel LiFeTiO4 as a cathode material for Li-ion batteries exhibits intercalation pseudocapacitive Li(+) storage behaviour. Nanoscale LiFeTiO4 nanoparticles with native carbon coating were synthesized by a sol-gel route. A fast and large-amount of Li(+) storage (up to 1.6 Li(+) per formula unit over cycling) in the nanoscale LiFeTiO4 host has been achieved without compromising kinetics.

10.
Artículo en Zh | MEDLINE | ID: mdl-25916365

RESUMEN

OBJECTIVE: To investigate the effects of simulated nitrogen-oxygen saturation exposure at a water depth of 50 m on the expression of inflammatory mediators including interleukin-6 (IL-6), interleukin-10 (IL-10), and tumor necrosis factor-alpha (TNF-α) in the external auditory canal (EAC) of rabbits. METHODS: Two batches of New Zealand rabbits were exposed to nitrogen-oxygen saturated at a water depth of 50 m. After exposure, the epithelial tissue in the EAC was analyzed using hematoxylin-eosin (HE) staining, and the changes in expression of inflammatory mediators including IL-6, IL-10, and TNF-α in the EAC of rabbits were determined by real-time polymerase chain reaction (PCR). RESULTS: According to the result of HE staining, more inflammatory cell infiltration, small vascular congestion, and mucosal edema in the EAC of rabbits were observed in the exposure group than in the control group. Additionally, compared with the control group, the exposure group had increased expression of IL-6 and TNF-α and reduced expression of IL-10 in the EAC of rabbits according to the result of real-time PCR. CONCLUSION: The nitrogen-oxygen saturation exposure at a water depth of 50 m can cause inflammatory injuries in the EAC of rabbits. The mechanism may be associated with increased expression of IL-6 and TNF-α and reduced expression of IL-10.


Asunto(s)
Conducto Auditivo Externo/fisiopatología , Exposición a Riesgos Ambientales/efectos adversos , Mediadores de Inflamación/metabolismo , Nitrógeno/efectos adversos , Oxígeno/efectos adversos , Agua/efectos adversos , Animales , Modelos Animales de Enfermedad , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Conejos , Factor de Necrosis Tumoral alfa/metabolismo
11.
Undersea Hyperb Med ; 41(2): 135-41, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24851551

RESUMEN

BACKGROUND: Pseudomonas aeruginosa (P. aeruginosa) is a common microbe isolated from divers with ear and skin infections. To obtain the epidemic characters of the occurrence of the P. aeruginosa infection, multilocus sequence typing (MLST) was used to assess the genetic background of different strains isolated from divers involved in saturation diving. METHODS: A total of 64 P. aeruginosa strains from naval divers were sequenced by multilocus sequence typing using seven housekeeping genes (acsA, aroE, guaA, mutL, nuoD, ppsA and trpE). The results were analyzed based on the P. aeruginosa international MLST database to obtain the allelic profiles and sequence types (STs). MLST data were analyzed by Bionumerics 4.0 (http: // pubmlst.org/mlstanalyse) using LIAN and eBURST. Twenty-eight strains with the typical genotype were selected for further analysis of pathogenic characteristics by Caenorhabditis elegans (C. elegans) fast killing model. RESULTS: Data from MLST revealed a high STs diversity among the strains. Of the 64 strains, 53 strains were assigned to 19 STs, and the remaining 11 clones could not be assigned. ST274 accounted for 18.5% (12/64), and ST260 accounted for 15.62% (10/64). C. elegans killing assay showed that all the test strains had distinct virulent properties as compared with the negative control group. Clone 503-1 had the highest virulence and clone 54 had the lowest virulence as compared with the positive clinical group. CONCLUSION: The P. aeruginosa strains carried by the occupational diver groups in Chinese regions have characteristically dominant STs, and have a relatively strong virulence as compared with the standard strain and the clinically isolated positive control strain.


Asunto(s)
Técnicas de Tipificación Bacteriana , Buceo , Tipificación de Secuencias Multilocus , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Adulto , Alelos , Animales , Caenorhabditis elegans , Cartilla de ADN/genética , Oído Externo/microbiología , Genotipo , Helio , Humanos , Personal Militar , Oxígeno , Pseudomonas aeruginosa/aislamiento & purificación , Enfermedades Cutáneas Bacterianas/microbiología , Especificidad de la Especie , Virulencia/genética , Adulto Joven
12.
Science ; 383(6684): 739-745, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38359130

RESUMEN

Fast cation transport in solids underpins energy storage. Materials design has focused on structures that can define transport pathways with minimal cation coordination change, restricting attention to a small part of chemical space. Motivated by the greater structural diversity of binary intermetallics than that of the metallic elements, we used two anions to build a pathway for three-dimensional superionic lithium ion conductivity that exploits multiple cation coordination environments. Li7Si2S7I is a pure lithium ion conductor created by an ordering of sulphide and iodide that combines elements of hexagonal and cubic close-packing analogously to the structure of NiZr. The resulting diverse network of lithium positions with distinct geometries and anion coordination chemistries affords low barriers to transport, opening a large structural space for high cation conductivity.

13.
Chem Asian J ; 18(1): e202201024, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36367282

RESUMEN

Redox flow batteries (RFBs) represent a promising approach to enabling the widespread integration of intermittent renewable energy. Rapid developments in RFB materials and electrolyte chemistries are needed to meet the cost and performance targets. In this review, special emphasis is given to the recent advances how electrolyte design could circumvent the main thermodynamic restrictions of aqueous electrolytes. The recent success of aqueous electrolyte chemistries has been demonstrated by extending the electrochemical stability window of water beyond the thermodynamic limit, the operating temperature window beyond the thermodynamic freezing temperature of water and crystallization of redox-active materials, and the aqueous solubility beyond the thermodynamic solubility limit. They would open new avenues towards enhanced energy storage and all-climate adaptability. Depending on the constituent, concentration and condition of electrolytes, the performance gain has been correlated to the specific solvation environment, interactions among species and ion association at a molecular level.


Asunto(s)
Electrólitos , Agua , Termodinámica , Temperatura , Oxidación-Reducción
14.
ChemSusChem ; 16(8): e202201993, 2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-36625759

RESUMEN

This study concerns the development of sustainable design strategies of aqueous electrolytes for redox flow batteries using redox-active organic materials. A green spontaneous grafting reaction occurs between a redox-active organic radical and an electrochemically activated structural modifier at room temperature through a simple mixing step. Then, a physical mixing method is used to formulate a structured aqueous electrolyte and enables aqueous solubilization of the organic solute from below 0.5 to 1.5 m beyond the conventional dissolution limit. The as-obtained concentrated mixture can be readily used as catholyte for a redox flow battery. A record high discharge cell voltage (1.6 V onset output voltage) in aqueous non-hybrid flow cell is attained by using the studied electrolytes.

15.
Small Methods ; 7(4): e2201328, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36808721

RESUMEN

High room-temperature ionic conductivity and good compatibility with lithium metal and cathode materials are prerequisites for solid-state electrolytes used in lithium metal batteries. Here, the solid-state polymer electrolytes (SSPE) are prepared by combining the traditional two-roll milling technology with interface wetting. The as-prepared electrolytes consisting of elastomer matrix and high-mole-loading of LiTFSI salt show a high room temperature ionic conductivity of 4.6×10-4 S cm-1 , a good electrochemical oxidation stability up to 5.08 V, and improved interface stability. These phenomena are rationalized with the formation of continuous ion conductive paths based on sophisticated structure characterization including synchrotron radiation Fourier-transform infrared microscopy, wide- and small-angle X-ray scattering. Moreover, at room temperature, the Li||SSPE||LFP coin cell shows a high capacity (161.5 mAh g-1 at 0.1 C), long-cycle-life (retaining 50% capacity and 99.8% Coulombic efficiency after 2000 cycles), and good C-rate compatibility up to 5 C. This study, therefore, provides a promising solid-state electrolyte that meets both the electrochemical and mechanical requirements of practical lithium metal batteries.

16.
Sci Rep ; 13(1): 11659, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37468556

RESUMEN

In some complicated situations, decompression sickness (DCS) combined with other injuries, such as irradiation, will seriously endanger life safety. However, it is still unclear whether irradiation will increase the incidence of DCS. This study was designed to investigate the damage effects of irradiation on decompression injury and the underlying mechanism. Sprague-Dawley rats were exposed to irradiation followed by hyperbaric decompressing and the mortality and decompression symptoms were observed. Lung tissue and bronchoalveolar lavage fluid were collected to detect the lung lesion, inflammation response, activity of the angiotensin system, oxidative stress, and relative signal pathway by multiple methods, including Q-PCR, western blot, and ELISA. As a result, pre-exposure to radiation significantly exacerbated disease outcomes and lung lesions of DCS. Mechanically, the up-regulation of angiotensin-converting enzyme expression and angiotensin II levels was responsible for the exacerbated DCS and lung lesions caused by predisposing irradiation exposure. Oxidative stress and PI3K/AKT signal pathway activation in pulmonary tissue were enhanced after irradiation plus decompression treatment. In conclusion, our results suggested that irradiation could exacerbate lung injury and the outcomes of DCS by activating the angiotensin system, which included eliciting oxidative stress and activation of the PI3K/AKT signal pathway.


Asunto(s)
Enfermedad de Descompresión , Ratas , Animales , Ratas Sprague-Dawley , Enfermedad de Descompresión/etiología , Enfermedad de Descompresión/metabolismo , Angiotensina II , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt
17.
Phys Chem Chem Phys ; 14(20): 7392-9, 2012 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-22531826

RESUMEN

Sol-gel Ru(0.3)Sn(0.7)O(2) electrode coatings with crack-free and mud-crack surface morphology deposited onto a Ti-substrate are prepared for a comparative investigation of the microstructural effect on the electrochemical activity for Cl(2) production and the Cl(2) bubble evolution behaviour. For comparison, a state-of-the-art mud-crack commercial Ru(0.3)Ti(0.7)O(2) coating is used. The compact coating is potentially durable over a long term compared to the mud-crack coating due to the reduced penetration of the electrolyte. Ti L-edge X-ray absorption spectroscopy confirms that a TiO(x) interlayer is formed between the mud-crack Ru(0.3)Sn(0.7)O(2) coating and the underlying Ti-substrate due to the attack of the electrolyte. Meanwhile, the compact coating shows enhanced activity in comparison to the commercial coating, benefiting from the nanoparticle-nanoporosity architecture. The dependence of the overall electrode polarization behaviour on the local activity and the bubble evolution behaviour for the Ru(0.3)Sn(0.7)O(2) coatings with different surface microstructure are evaluated by means of scanning electrochemical microscopy and microscopic bubble imaging.


Asunto(s)
Cloro/química , Técnicas Electroquímicas , Óxidos/química , Rutenio/química , Estaño/química , Catálisis , Electrodos , Transición de Fase , Propiedades de Superficie , Titanio/química , Espectroscopía de Absorción de Rayos X
18.
Can J Microbiol ; 58(2): 158-69, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22280841

RESUMEN

Pseudomonas aeruginosa is an important opportunistic pathogen associated with multiple diseases including cystic fibrosis and nosocomial infections. Pseudomonas aeruginosa is also the microbe most often isolated from ear and skin infections in divers. Saturation divers often suffer from various skin and mucous disorders, of which P. aeruginosa infections are the most serious and frequent. Previous studies mainly focused on adaptive and regulatory mechanisms of P. aeruginosa virulence in inducing clinical acute and chronic infections under different environmental conditions. However, there are few studies describing the physiological adaptive and regulatory mechanisms of P. aeruginosa in inducing high infectivity in healthy divers under hyperbaric oxyhelium conditions and even fewer studies describing the overall influence of the hyperbaric oxyhelium environment on regulating mRNA and protein expression levels of P. aeruginosa. The present study used transcriptomic and virulence phenotype analysis to identify factors that allow P. aeruginosa to become established in a hyperbaric oxyhelium environment to facilitate infections in divers. Transcriptional profiling of P. aeruginosa grown under steady-state hyperbaric oxyhelium stress conditions showed an upregulation of genes associated with stress-sense/response, protein folding, transcriptional regulation, pili and flagellum metabolism, virulence adaptation, and membrane protein metabolism. Some of these genes (including several two-component systems not previously known to be influenced by hyperbaric oxyhelium) were differentially expressed by P. aeruginosa in response to 72 h of exposure to hyperbaric oxyhelium stress. Detection of the virulence phenotype confirmed the results of cDNA microarrays. Based on these results, we conclude that hyperbaric oxyhelium conditions affect PAO1 gene expression and upregulate the expression of most virulence genes. The data obtained in our study may provide new insight into the molecular mechanism of hyperbaric oxyhelium exposure against P. aeruginosa virulence adaptation.


Asunto(s)
Pseudomonas aeruginosa/fisiología , Adaptación Fisiológica , Presión Atmosférica , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Flagelos/metabolismo , Análisis por Micromatrices , Análisis de Secuencia por Matrices de Oligonucleótidos , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
19.
Undersea Hyperb Med ; 39(1): 563-8, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22400446

RESUMEN

High pressure nervous syndrome (HPNS) is an instinctive response of mammalian high-class nervous functions to increased hydrostatic pressure. Electrophysiological activity of mammalian central nervous system (CNS), including brainstem auditory-evoked potential (BAEP), has characteristic changes under pressure. Here we recorded BAEP of 63 mice exposed to 0-4.0 MPa. The results showed that interpeak latencies between wave I and wave IV (IPL1-4) and their changes under pressures (deltaIPL1-4) responded to increasing pressure in a biphase pattern, shortened under pressure from 0 to 0.7MPa, then prolonged later. There were significantly negative correlations between base IPL1-4s and deltaIPL1-4s (p < 0.01). Individual IPL1-4s were supposed to respond to increasing pressure in a relative steady pattern in accordance with its base IPL1-4s. Those with shorter-base IPL1-4 presented direct increases in IPL1-4. However, those with longer-base IPL1-4 had a decreased IPL1-4 under small to moderate pressure then rebounded later. Our results suggested that mammalian CNS functions were susceptible to small to moderate pressure, as well as a higher pressure than 1.0MPa. Mice, as a statistical mass, had an "optimum" pressure about 0.7MPa, rather than atmospheric pressure, referred as shortest IPL1-4s. An individual's response to high pressure might be relied on his base biological condition. Our results highlighted a new approach to investigate a practical strategy to medical selecting barotolerant candidates for deep divers. Diversity of individual susceptibility to hydrostatic pressure was under discussed. Underlying mechanisms of the "optimum" pressure for CNS function and its significance to neurophysiology remain open to further exploration.


Asunto(s)
Sistema Nervioso Central/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Síndrome Neurológico de Alta Presión/fisiopatología , Animales , Cámaras de Exposición Atmosférica , Helio , Presión Hidrostática , Masculino , Ratones , Oxígeno , Presión Parcial
20.
Chem Mater ; 34(9): 4073-4087, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35573111

RESUMEN

A tetragonal argyrodite with >7 mobile cations, Li7Zn0.5SiS6, is experimentally realized for the first time through solid state synthesis and exploration of the Li-Zn-Si-S phase diagram. The crystal structure of Li7Zn0.5SiS6 was solved ab initio from high-resolution X-ray and neutron powder diffraction data and supported by solid-state NMR. Li7Zn0.5SiS6 adopts a tetragonal I4 structure at room temperature with ordered Li and Zn positions and undergoes a transition above 411.1 K to a higher symmetry disordered F43m structure more typical of Li-containing argyrodites. Simultaneous occupation of four types of Li site (T5, T5a, T2, T4) at high temperature and five types of Li site (T5, T2, T4, T1, and a new trigonal planar T2a position) at room temperature is observed. This combination of sites forms interconnected Li pathways driven by the incorporation of Zn2+ into the Li sublattice and enables a range of possible jump processes. Zn2+ occupies the 48h T5 site in the high-temperature F43m structure, and a unique ordering pattern emerges in which only a subset of these T5 sites are occupied at room temperature in I4 Li7Zn0.5SiS6. The ionic conductivity, examined via AC impedance spectroscopy and VT-NMR, is 1.0(2) × 10-7 S cm-1 at room temperature and 4.3(4) × 10-4 S cm-1 at 503 K. The transition between the ordered I4 and disordered F43m structures is associated with a dramatic decrease in activation energy to 0.34(1) eV above 411 K. The incorporation of a small amount of Zn2+ exercises dramatic control of Li order in Li7Zn0.5SiS6 yielding a previously unseen distribution of Li sites, expanding our understanding of structure-property relationships in argyrodite materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA