RESUMEN
Definitive diagnosis of sporadic Creutzfeldt-Jakob disease (sCJD) relies on the examination of brain tissues for the pathological prion protein (PrPSc). Our previous study revealed that PrPSc-seeding activity (PrPSc-SA) is detectable in skin of sCJD patients by an ultrasensitive PrPSc seed amplification assay (PrPSc-SAA) known as real-time quaking-induced conversion (RT-QuIC). A total of 875 skin samples were collected from 2 cohorts (1 and 2) at autopsy from 2-3 body areas of 339 cases with neuropathologically confirmed prion diseases and non-sCJD controls. The skin samples were analyzed for PrPSc-SA by RT-QuIC assay. The results were compared with demographic information, clinical manifestations, cerebrospinal fluid (CSF) PrPSc-SA, other laboratory tests, subtypes of prion diseases defined by the methionine (M) or valine (V) polymorphism at residue 129 of PrP, PrPSc types (#1 or #2), and gene mutations in deceased patients. RT-QuIC assays of the cohort #1 by two independent laboratories gave 87.3% or 91.3% sensitivity and 94.7% or 100% specificity, respectively. The cohort #2 showed sensitivity of 89.4% and specificity of 95.5%. RT-QuIC of CSF available from 212 cases gave 89.7% sensitivity and 94.1% specificity. The sensitivity of skin RT-QuIC was subtype dependent, being highest in sCJDVV1-2 subtype, followed by VV2, MV1-2, MV1, MV2, MM1, MM1-2, MM2, and VV1. The skin area next to the ear gave highest sensitivity, followed by lower back and apex of the head. Although no difference in brain PrPSc-SA was detected between the cases with false negative and true positive skin RT-QuIC results, the disease duration was significantly longer with the false negatives [12.0 ± 13.3 (months, SD) vs. 6.5 ± 6.4, p < 0.001]. Our study validates skin PrPSc-SA as a biomarker for the detection of prion diseases, which is influenced by the PrPSc types, PRNP 129 polymorphisms, dermatome sampled, and disease duration.
Asunto(s)
Síndrome de Creutzfeldt-Jakob , Enfermedades por Prión , Priones , Humanos , Priones/genética , Enfermedades por Prión/diagnóstico , Enfermedades por Prión/genética , Síndrome de Creutzfeldt-Jakob/diagnóstico , Síndrome de Creutzfeldt-Jakob/genética , BiomarcadoresRESUMEN
INTRODUCTION: Tumor necrosis factor (TNF) inhibitors are widely used to treat rheumatoid arthritis (RA) and their potential to retard Alzheimer's disease (AD) progression has been reported. However, their long-term effects on the dementia/AD risk remain unknown. METHODS: A propensity scored matched retrospective cohort study was conducted among 40,207 patients with RA within the US Veterans Affairs health-care system from 2000 to 2020. RESULTS: A total of 2510 patients with RA prescribed TNF inhibitors were 1:2 matched to control patients. TNF inhibitor use was associated with reduced dementia risk (hazard ratio [HR]: 0.64, 95% confidence interval [CI]: 0.52-0.80), which was consistent as the study period increased from 5 to 20 years after RA diagnosis. TNF inhibitor use also showed a long-term effect in reducing the risk of AD (HR: 0.57, 95% CI: 0.39-0.83) during the 20 years of follow-up. CONCLUSION: TNF inhibitor use is associated with lower long-term risk of dementia/AD among US veterans with RA.
Asunto(s)
Antirreumáticos , Artritis Reumatoide , Demencia , Veteranos , Antirreumáticos/efectos adversos , Artritis Reumatoide/complicaciones , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/epidemiología , Demencia/inducido químicamente , Demencia/epidemiología , Demencia/prevención & control , Humanos , Puntaje de Propensión , Estudios Retrospectivos , Inhibidores del Factor de Necrosis TumoralRESUMEN
Parkinson's disease (PD) is characterized by selective degeneration of dopaminergic neurons. Although the etiology of PD remains incompletely understood, oxidative stress has been implicated as an important contributor in the development of PD. Oxidative stress can lead to oxidation and functional perturbation of proteins critical to neuronal survival. Glutaredoxin 1 (Grx1) is an evolutionally conserved antioxidant enzyme that repairs protein oxidation by reversing the oxidative modification of cysteine known as S-glutathionylation. We aimed to explore the regulatory role of Grx1 in PD. We first examined the levels of Grx1 in postmortem midbrain samples from PD patients, and observed that Grx1 content is decreased in PD, specifically within the dopaminergic neurons. We subsequently investigated the potential role of Grx1 deficiency in PD pathogenesis by examining the consequences of loss of the Caenorhabditis elegans Grx1 homolog in well-established worm models of familial PD caused by overexpression of pathogenic human LRRK2 mutants G2019S or R1441C. We found that loss of the Grx1 homolog led to significant exacerbation of the neurodegenerative phenotype in C. elegans overexpressing the human LRRK2 mutants. Re-expression in the dopaminergic neurons of the active, but not a catalytically inactive form of the Grx1 homolog rescued the exacerbated phenotype. Loss of the Grx1 homolog also exacerbated the neurodegenerative phenotype in other C. elegans models, including overexpression of human α-synuclein and overexpression of tyrosine hydroxylase (a model of sporadic PD). Therefore, our results reveal a novel neuroprotective role of glutaredoxin against dopaminergic neurodegeneration in models of familial and sporadic PD.
Asunto(s)
Caenorhabditis elegans/genética , Glutarredoxinas/genética , Proteínas del Helminto/metabolismo , Enfermedad de Parkinson/genética , Animales , Supervivencia Celular , Cisteína/metabolismo , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Evolución Molecular , Regulación de la Expresión Génica , Glutarredoxinas/deficiencia , Glutarredoxinas/metabolismo , Proteínas del Helminto/genética , Homeostasis , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Mesencéfalo/metabolismo , Estrés Oxidativo , Fenotipo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Tirosina 3-Monooxigenasa/genética , Tirosina 3-Monooxigenasa/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismoRESUMEN
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, caused by the degeneration of the dopaminergic neurons in the substantia nigra. Mutations in PARK7 (DJ-1) result in early onset autosomal recessive PD, and oxidative modification of DJ-1 has been reported to regulate the protective activity of DJ-1 in vitro. Glutathionylation is a prevalent redox modification of proteins resulting from the disulfide adduction of the glutathione moiety to a reactive cysteine-SH, and glutathionylation of specific proteins has been implicated in regulation of cell viability. Glutaredoxin 1 (Grx1) is the principal deglutathionylating enzyme within cells, and it has been reported to mediate protection of dopaminergic neurons in Caenorhabditis elegans; however many of the functional downstream targets of Grx1 in vivo remain unknown. Previously, DJ-1 protein content was shown to decrease concomitantly with diminution of Grx1 protein content in cell culture of model neurons (SH-SY5Y and Neuro-2A lines). In the current study we aimed to investigate the regulation of DJ-1 by Grx1 in vivo and characterize its glutathionylation in vitro. Here, with Grx(-/-) mice we provide show that Grx1 regulates protein levels of DJ-1 in vivo. Furthermore, with model neuronal cells (SH-SY5Y) we observed decreased DJ-1 protein content in response to treatment with known glutathionylating agents, and with isolated DJ-1 we identified two distinct sites of glutathionylation. Finally, we found that overexpression of DJ-1 in the dopaminergic neurons partly compensates for the loss of the Grx1 homologue in a C. elegans in vivo model of PD. Therefore, our results reveal a novel redox modification of DJ-1 and suggest a novel regulatory mechanism for DJ-1 content in vivo.
Asunto(s)
Glutarredoxinas/metabolismo , Enfermedad de Parkinson/metabolismo , Proteína Desglicasa DJ-1/metabolismo , Secuencia de Aminoácidos , Animales , Caenorhabditis elegans , Línea Celular Tumoral , Cisteína/metabolismo , Glutatión/metabolismo , Humanos , Ratones , Proteína Desglicasa DJ-1/química , Proteína Desglicasa DJ-1/deficiencia , Procesamiento Proteico-PostraduccionalRESUMEN
Mutations in leucine-rich repeat kinase 2 (LRRK2) are the most frequent known cause of late-onset Parkinson's disease (PD). To explore the therapeutic potential of small molecules targeting the LRRK2 kinase domain, we characterized two LRRK2 kinase inhibitors, TTT-3002 and LRRK2-IN1, for their effects against LRRK2 activity in vitro and in Caenorhabditis elegans models of LRRK2-linked neurodegeneration. TTT-3002 and LRRK2-IN1 potently inhibited in vitro kinase activity of LRRK2 wild-type and mutant proteins, attenuated phosphorylation of cellular LRRK2 and rescued neurotoxicity of mutant LRRK2 in transfected cells. To establish whether LRRK2 kinase inhibitors can mitigate pathogenesis caused by different mutations including G2019S and R1441C located within and outside of the LRRK2 kinase domain, respectively, we evaluated effects of TTT-3002 and LRRK2-IN1 against R1441C- and G2019S-induced neurodegeneration in C. elegans models. TTT-3002 and LRRK2-IN1 rescued the behavioral deficit characteristic of dopaminergic impairment in transgenic C. elegans expressing human R1441C- and G2019S-LRRK2. The inhibitors displayed nanomolar to low micromolar rescue potency when administered either pre-symptomatically or post-symptomatically, indicating both prevention and reversal of the dopaminergic deficit. The same treatments also led to long-lasting prevention and rescue of neurodegeneration. In contrast, TTT-3002 and LRRK2-IN1 were ineffective against the neurodegenerative phenotype in transgenic worms carrying the inhibitor-resistant A2016T mutation of LRRK2, suggesting that they elicit neuroprotective effects in vivo by targeting LRRK2 specifically. Our findings indicate that the LRRK2 kinase activity is critical for neurodegeneration caused by R1441C and G2019S mutations, suggesting that kinase inhibition of LRRK2 may represent a promising therapeutic strategy for PD.
Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Caenorhabditis elegans/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/toxicidad , Animales , Animales Modificados Genéticamente , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Concentración 50 Inhibidora , Mutación , Neuronas/citología , Neurotoxinas/toxicidad , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosforilación/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismoRESUMEN
The leucine-rich repeat kinase 2 (LRRK2) mutations are the most common cause of autosomal-dominant Parkinson disease (PD). Mitochondrial dysfunction represents a critical event in the pathogenesis of PD. We demonstrated that wild-type (WT) LRRK2 expression caused mitochondrial fragmentation along with increased mitochondrial dynamin-like protein (DLP1, also known as DRP1), a fission protein, which was further exacerbated by expression of PD-associated mutants (R1441C or G2019S) in both SH-SY5Y and differentiated primary cortical neurons. We also found that LRRK2 interacted with DLP1, and LRRK2-DLP1 interaction was enhanced by PD-associated mutations that probably results in increased mitochondrial DLP1 levels. Co-expression of dominant-negative DLP1 K38A or WT Mfn2 blocked LRRK2-induced mitochondrial fragmentation, mitochondrial dysfunction and neuronal toxicity. Importantly, mitochondrial fragmentation and dysfunction were not observed in cells expressing either GTP-binding deficient mutant LRRK2 K1347A or kinase-dead mutant D1994A which has minimal interaction with DLP1 and did not increase the mitochondrial DLP1 level. We concluded that LRRK2 regulates mitochondrial dynamics by increasing mitochondrial DLP1 through its direct interaction with DLP1, and LRRK2 kinase activity plays a critical role in this process.
Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Dinaminas , GTP Fosfohidrolasas/genética , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Microscopía Electrónica de Transmisión , Proteínas Asociadas a Microtúbulos/genética , Mitocondrias/ultraestructura , Proteínas Mitocondriales/genética , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Neuronas/metabolismo , Neuronas/ultraestructura , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ratas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estrés Fisiológico , TransfecciónRESUMEN
Seeding activities of disease-associated α-synuclein aggregates (αSynD), a hallmark of Parkinson's disease (PD), are detectable by seed amplification assay (αSyn-SAA) and being developed as a diagnostic biomarker for PD. Sensitive and accurate αSyn-SAA for blood or saliva would greatly facilitate PD diagnosis. This prospective diagnostic study conducted αSyn-SAA analyses on serum and saliva samples collected from patients clinically diagnosed with PD or healthy controls (HC). 124 subjects (82 PD, 42 HC) donated blood and had extensive clinical assessments, of whom 74 subjects (48 PD, 26 HC) also donated saliva at the same visits. An additional 57 subjects (35 PD, 22 HC) donated saliva and had more limited clinical assessments. The mean ages were 69.21, 66.55, 69.58, and 64.71 years for PD serum donors, HC serum donors, PD saliva donors, and HC saliva donors, respectively. αSynD seeding activities in either sample type alone or both sample types together were evaluated for PD diagnosis. Serum αSyn-SAA data from 124 subjects showed 80.49% sensitivity, 90.48% specificity, and 0.9006 accuracy (AUC of ROC); saliva αSyn-SAA data from 131 subjects attained 74.70% sensitivity, 97.92% specificity, and 0.8966 accuracy. Remarkably, the combined serum and saliva αSyn-SAA from 74 subjects with both sample types achieved better diagnostic performance: 95.83% sensitivity, 96.15% specificity, and 0.98 accuracy. In addition, serum αSynD seeding activities correlated inversely with Montreal Cognitive Assessment in males and positively with Hamilton Depression Rating Scale in females and in the < 70 age group, whereas saliva αSynD seeding activities correlated inversely with age at diagnosis in males and in the < 70 age group. Our data indicate that serum and saliva αSyn-SAA together can achieve high diagnostic accuracy for PD comparable to that of CSF αSyn-SAA, suggesting their potential utility for highly sensitive, accurate, and minimally invasive diagnosis of PD in routine clinical practice and clinical studies.
Asunto(s)
Biomarcadores , Enfermedad de Parkinson , Saliva , alfa-Sinucleína , Humanos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/sangre , Enfermedad de Parkinson/metabolismo , Masculino , Femenino , Anciano , Biomarcadores/sangre , Persona de Mediana Edad , alfa-Sinucleína/metabolismo , alfa-Sinucleína/sangre , Saliva/química , Saliva/metabolismo , Sensibilidad y Especificidad , Estudios ProspectivosRESUMEN
Importance: Parkinson's disease (PD), the second most common neurodegenerative disease, is pathologically characterized by intraneuronal deposition of misfolded alpha-synuclein aggregates (αSyn D ). αSyn D seeding activities in CSF and skin samples have shown great promise in PD diagnosis, but they require invasive procedures. Sensitive and accurate αSyn D seed amplification assay (αSyn-SAA) for more accessible and minimally invasive samples (such as blood and saliva) are urgently needed for PD pathological diagnosis in routine clinical practice. Objective: To develop a sensitive and accurate αSyn-SAA biomarker using blood and saliva samples for sensitive, accurate and minimally invasive PD diagnosis. Design Setting and Participants: This prospective diagnostic study evaluates serum and saliva samples collected from patients clinically diagnosed with PD or healthy controls (HC) without PD at an academic Parkinson's and Movement Disorders Center from February 2020 to March 2024. Patients diagnosed with non-PD parkinsonism were excluded from this analysis. A total of 124 serum samples (82 PD and 42 HC) and 131 saliva samples (83 PD and 48 HC) were collected and examined by αSyn-SAA. Out of the 124 serum donors, a subset of 74 subjects (48 PD and 26 HC) also donated saliva samples during the same visits. PD patients with serum samples had a mean age of 69.21 years (range 44-88); HC subjects with serum samples had a mean age of 66.55 years (range 44-81); PD patients with saliva samples had a mean age of 69.58 years (range 49-87); HC subjects with saliva samples had a mean age of 64.71 years (range 30-81). Main Outcomes and Measures: Serum and/or saliva αSyn D seeding activities from PD and HC subjects were measured by αSyn-SAA using the Real-Time Quaking-Induced Conversion (RT-QuIC) platform. These PD patients had extensive clinical assessments including MDS-UPDRS. For a subset of PD and HC subjects whose serum and saliva samples were both collected during the same visits, the αSyn D seeding activities in both samples from the same subjects were examined, and the diagnostic accuracies for PD based on the seeding activities in either sample alone or both samples together were compared. Results: RT-QuIC analysis of αSyn D seeding activities in the 124 serum samples revealed a sensitivity of 80.49%, a specificity of 90.48%, and an accuracy of 0.9006 (AUC of ROC, 95% CI, 0.8472-0.9539, p <0.0001) for PD diagnosis. RT-QuIC analysis of αSyn D seeding activity in 131 saliva samples revealed a sensitivity of 74.70%, a specificity of 97.92%, and an accuracy of 0.8966 (AUC of ROC, 95% CI, 0.8454-0.9478, p <0.0001). When aSyn D seeding activities in the paired serum-saliva samples from the subset of 48 PD and 26 HC subjects were considered together, sensitivity was 95.83%, specificity was 96.15%, and the accuracy was 0.98 (AUC of ROC, 95% CI, 0.96-1.00, p <0.001), which are significantly better than when αSyn D seeding activities in either serum or saliva were used alone. For the paired serum-saliva samples, when specificity was set at 100% by elevating the αSyn-SAA cutoff values, a sensitivity of 91.7% and an accuracy of 0.9457 were still attained. Detailed correlation analysis revealed that αSyn D seeding activities in the serum of PD patients were correlated inversely with Montreal Cognitive Assessment (MoCA) score ( p =0.04), positively with Hamilton Depression Rating Scale (HAM-D) ( p =0.03), and weakly positively with PDQ-39 cognitive impairment score ( p =0.07). Subgroup analysis revealed that the inverse correlation with MoCA was only seen in males ( p =0.013) and weakly in the ≥70 age group ( p =0.07), and that the positive correlation with HAM-D was only seen in females ( p =0.04) and in the <70 age group ( p =0.01). In contrast, αSyn D seeding activities in the saliva of PD patients were inversely correlated with age at diagnosis ( p =0.02) and the REM sleep behavior disorder (RBD) status ( p =0.04), but subgroup analysis showed that the inverse correlation with age at diagnosis was only seen in males ( p =0.04) and in the <70 age group ( p =0.01). Conclusion and Relevance: Our data show that concurrent RT-QuIC assay of αSyn D seeding activities in both serum and saliva can achieve high diagnostic accuracies comparable to that of CSF αSyn-SAA, suggesting that αSyn D seeding activities in serum and saliva together can potentially be used as a valuable biomarker for highly sensitive, accurate, and minimally invasive diagnosis of PD in routine clinical practice. αSyn D seeding activities in serum and saliva of PD patients correlate differentially with some clinical characteristics and in an age and sex-dependent manner. KEY POINTS: Question: Are αSyn D seeding activities in serum and saliva together a more sensitive and accurate diagnostic PD biomarker than αSyn D seeding activities in either sample type alone? Are αSyn D seeding activities in either serum or saliva correlated with any clinical characteristics? Findings: Examinations of αSyn D seeding activities in 124 serum samples and 131 saliva samples from PD and heathy control subjects show that αSyn D seeding activities in both serum and saliva samples together can provide significantly more sensitive and accurate diagnosis of PD than either sample type alone. αSyn D seeding activities in serum or saliva exhibit varied inverse or positive correlations with some clinical features in an age and sex-dependent manner. Meaning: αSyn D seeding activities in serum and saliva together can potentially be used as a valuable pathological biomarker for highly sensitive, accurate, and minimally invasive PD diagnosis in routine clinical practice and clinical studies, and αSyn D seeding activities in serum or saliva correlate with some clinical characteristics in an age and sex-dependent manner, suggesting some possible clinical utility of quantitative serum/saliva αSyn-SAA data.
RESUMEN
Prion diseases are neurodegenerative conditions associated with a misfolded and infectious protein, scrapie prion protein (PrP(Sc)). PrP(Sc) propagate prion diseases within and between species and thus pose risks to public health. Prion infectivity or PrP(Sc) presence has been demonstrated in urine of experimentally infected animals, but there are no recent studies of urine from patients with Creutzfeldt-Jakob disease (CJD). We performed bioassays in transgenic mice expressing human PrP to assess prion infectivity in urine from patients affected by a common subtype of sporadic CJD, sCJDMM1. We tested raw urine and 100-fold concentrated and dialyzed urine and assessed the sensitivity of the bioassay along with the effect of concentration and dialysis on prion infectivity. Intracerebral inoculation of transgenic mice with urine from 3 sCJDMM1 patients failed to demonstrate prion disease transmission, indicating that prion infectivity in urine from sCJDMM1 patients is either not present or is <0.38 infectious units/mL.
Asunto(s)
Síndrome de Creutzfeldt-Jakob/orina , Priones/patogenicidad , Priones/orina , Animales , Bioensayo , Encéfalo , Humanos , Ratones , Ratones Transgénicos , Sensibilidad y EspecificidadRESUMEN
The presence of the prion protein (PrP) in normal human urine is controversial and currently inconclusive. This issue has taken a special relevance because prion infectivity has been demonstrated in urine of animals carrying experimental or naturally occurring prion diseases, but the actual presence and tissue origin of the infectious prion have not been determined. We used immunoprecipitation, one- and two-dimensional electrophoresis, and mass spectrometry to prove definitely the presence of PrP in human urine and its post-translational modifications. We show that urinary PrP (uPrP) is truncated mainly at residue 112 but also at other residues up to 122. This truncation makes uPrP undetectable with some commonly used antibodies to PrP. uPrP is glycosylated and carries an anchor which, at variance with that of cellular PrP, lacks the inositol-associated phospholipid moiety, indicating that uPrP is probably shed from the cell surface. The detailed characterization of uPrP reported here definitely proves the presence of PrP in human urine and will help determine the origin of prion infectivity in urine.
Asunto(s)
Enfermedades por Prión/orina , Priones/orina , Procesamiento Proteico-Postraduccional , Humanos , Priones/patogenicidadRESUMEN
CD3ζ is a subunit of the CD3 molecule that, until recently, appeared restricted to T cells and natural killer cells. However, experimental studies have demonstrated a role of CD3ζ in dendritic outgrowth in the visual system as well as in synaptic plasticity. Given the increasing evidence for uncharacteristic recapitulation of neurodevelopmental processes in neurodegenerative diseases, in this study, we evaluated brains from subjects with Parkinson's disease and Lewy body dementia for evidence of aberrant CD3 expression. Our data shows marked CD3ζ in association with the α-synuclein containing pathological lesions, i.e., Lewy bodies and Lewy neurites, in the brains of subjects with Parkinson's disease and Lewy body dementia. This finding raises the novel concept of CD3 dysregulation in these disorders as a pathogenic factor and also furthers the increasing evidence that the recall of aberrant neurodevelopmental processes underlies the pathogenesis of neurodegenerative diseases.
Asunto(s)
Complejo CD3/metabolismo , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Anciano , Anciano de 80 o más Años , Encéfalo/patología , Femenino , Humanos , Inmunohistoquímica , Cuerpos de Lewy/patología , Cuerpos de Lewy/ultraestructura , Masculino , Persona de Mediana Edad , alfa-Sinucleína/metabolismoRESUMEN
BACKGROUND: Interactions between the gut microbiota, microglia, and aging may modulate Alzheimer's disease (AD) pathogenesis but the precise nature of such interactions is not known. METHODS: We developed an integrated multi-dimensional, knowledge-driven, systems approach to identify interactions among microbial metabolites, microglia, and AD. Publicly available datasets were repurposed to create a multi-dimensional knowledge-driven pipeline consisting of an integrated network of microbial metabolite-gene-pathway-phenotype (MGPPN) consisting of 34,509 nodes (216 microbial metabolites, 22,982 genes, 1329 pathways, 9982 mouse phenotypes) and 1,032,942 edges. RESULTS: We evaluated the network-based ranking algorithm by showing that abnormal microglia function and physiology are significantly associated with AD pathology at both genetic and phenotypic levels: AD risk genes were ranked at the top 6.4% among 22,982 genes, P < 0.001. AD phenotypes were ranked at the top 11.5% among 9982 phenotypes, P < 0.001. A total of 8094 microglia-microbial metabolite-gene-pathway-phenotype-AD interactions were identified for top-ranked AD-associated microbial metabolites. Short-chain fatty acids (SCFAs) were ranked at the top among prioritized AD-associated microbial metabolites. Through data-driven analyses, we provided evidence that SCFAs are involved in microglia-mediated gut-microbiota-brain interactions in AD at both genetic, functional, and phenotypic levels. CONCLUSION: Our analysis produces a novel framework to offer insights into the mechanistic links between gut microbial metabolites, microglia, and AD, with the overall goal to facilitate disease mechanism understanding, therapeutic target identification, and designing confirmatory experimental studies.
Asunto(s)
Enfermedad de Alzheimer , Microbioma Gastrointestinal , Enfermedad de Alzheimer/genética , Animales , Encéfalo , Ratones , Microglía , FenotipoRESUMEN
Definitive diagnosis of Parkinson's disease (PD) and dementia with Lewy bodies (DLB) relies on postmortem finding of disease-associated alpha-synuclein (αSynD) as misfolded protein aggregates in the central nervous system (CNS). The recent development of the real-time quaking induced conversion (RT-QuIC) assay for ultrasensitive detection of αSynD aggregates has revitalized the diagnostic values of clinically accessible biospecimens, including cerebrospinal fluid (CSF) and peripheral tissues. However, the current αSyn RT-QuIC assay platforms vary widely and are thus challenging to implement and standardize the measurements of αSynD across a wide range of biospecimens and in different laboratories. We have streamlined αSyn RT-QuIC assay based on a second generation assay platform that was assembled entirely with commercial reagents. The streamlined RT-QuIC method consisted of a simplified protocol requiring minimal hands-on time, and allowing for a uniform analysis of αSynD in different types of biospecimens from PD and DLB. Ultrasensitive and specific RT-QuIC detection of αSynD aggregates was achieved in million-fold diluted brain homogenates and in nanoliters of CSF from PD and DLB cases but not from controls. Comparative analysis revealed higher seeding activity of αSynD in DLB than PD in both brain homogenates and CSF. Our assay was further validated with CSF samples of 214 neuropathologically confirmed cases from tissue repositories (88 PD, 58 DLB, and 68 controls), yielding a sensitivity of 98% and a specificity of 100%. Finally, a single RT-QuIC assay protocol was employed uniformly to detect seeding activity of αSynD in PD samples across different types of tissues including the brain, skin, salivary gland, and colon. We anticipate that our streamlined protocol will enable interested laboratories to easily and rapidly implement the αSyn RT-QuIC assay for various clinical specimens from PD and DLB. The utilization of commercial products for all assay components will improve the robustness and standardization of the RT-QuIC assay for diagnostic applications across different sites. Due to ultralow sample consumption, the ultrasensitive RT-QuIC assay will facilitate efficient use and sharing of scarce resources of biospecimens. Our streamlined RT-QuIC assay is suitable to track the distribution of αSynD in CNS and peripheral tissues of affected patients. The ongoing evaluation of RT-QuIC assay of αSynD as a potential biomarker for PD and DLB in clinically accessible biospecimens has broad implications for understanding disease pathogenesis, improving early and differential diagnosis, and monitoring therapeutic efficacies in clinical trials.
Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Enfermedad por Cuerpos de Lewy/diagnóstico , Enfermedad de Parkinson/diagnóstico , alfa-Sinucleína/análisis , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Sensibilidad y EspecificidadRESUMEN
Skin α-synuclein deposition is considered a potential biomarker for Parkinson's disease (PD). Real-time quaking-induced conversion (RT-QuIC) is a novel, ultrasensitive, and efficient seeding assay that enables the detection of minute amounts of α-synuclein aggregates. We aimed to determine the diagnostic accuracy, reliability, and reproducibility of α-synuclein RT-QuIC assay of skin biopsy for diagnosing PD and to explore its correlation with clinical markers of PD in a two-center inter-laboratory comparison study. Patients with clinically diagnosed PD (n = 34), as well as control subjects (n = 30), underwent skin punch biopsy at multiple sites (neck, lower back, thigh, and lower leg). The skin biopsy samples (198 in total) were divided in half to be analyzed by RT-QuIC assay in two independent laboratories. The α-synuclein RT-QuIC assay of multiple skin biopsies supported the clinical diagnosis of PD with a diagnostic accuracy of 88.9% and showed a high degree of inter-rater agreement between the two laboratories (92.2%). Higher α-synuclein seeding activity in RT-QuIC was shown in patients with longer disease duration and more advanced disease stage and correlated with the presence of REM sleep behavior disorder, cognitive impairment, and constipation. The α-synuclein RT-QuIC assay of minimally invasive skin punch biopsy is a reliable and reproducible biomarker for Parkinson's disease. Moreover, α-synuclein RT-QuIC seeding activity in the skin may serve as a potential indicator of progression as it correlates with the disease stage and certain non-motor symptoms.
RESUMEN
Mutations in LRRK2 are thus far the most frequent known cause of autosomal dominant and idiopathic Parkinson's disease (PD) with prevalent mutations being found within the GTPase (R1441C/G) and kinase (G2019S) domains. Previous in vitro studies have revealed that R1441C and G2019S mutations are associated with increased kinase activity. To better understand LRRK2-linked PD pathogenesis in vivo, we have generated transgenic C. elegans overexpressing human LRRK2 wild type, R1441C and G2019S in dopaminergic (DA) neurons. Overexpression of these LRRK2 proteins causes age-dependent DA neurodegeneration, behavioral deficits, and locomotor dysfunction that are accompanied by a reduction of dopamine levels in vivo. In comparison, R1441C and G2019S mutants cause more severe phenotypes than the wild type protein. Interestingly, treatment with exogenous dopamine rescues the LRRK2-induced behavioral and locomotor phenotypes. In contrast, expression of the GTP binding defective mutant, K1347A, or knockout of the C. elegans LRRK2 homolog, LRK-1, prevents the LRRK2-induced neurodegeneration and behavioral abnormalities. Hence, our transgenic LRRK2 C. elegans models recapitulate key features of PD including progressive neurodegeneration, impairment of dopamine-dependent behavior and locomotor function, and reduction in dopamine levels. Furthermore, our findings provide strong support for the critical role of GTPase/kinase activity in LRRK2-linked pathologies. These invertebrate models will be useful for studying pathogenesis of PD and for development of potential therapeutics for the disease.
Asunto(s)
Caenorhabditis elegans/fisiología , Dopamina/fisiología , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/patología , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Enfermedad de Parkinson/metabolismo , Proteínas Serina-Treonina Quinasas/fisiología , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Modelos Animales de Enfermedad , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Neuronas/metabolismo , Neuronas/patología , Enfermedad de Parkinson/fisiopatología , Proteínas Serina-Treonina Quinasas/genéticaRESUMEN
OXA beta-lactamases are largely responsible for beta-lactam resistance in Acinetobacter spp. and Pseudomonas aeruginosa, two of the most difficult-to-treat nosocomial pathogens. In general, the beta-lactamase inhibitors used in clinical practice (clavulanic acid, sulbactam, and tazobactam) demonstrate poor activity against class D beta-lactamases. To overcome this challenge, we explored the abilities of beta-lactamase inhibitors of the C-2- and C-3-substituted penicillin and cephalosporin sulfone families against OXA-1, extended-spectrum (OXA-10, OXA-14, and OXA-17), and carbapenemase-type (OXA-24/40) class D beta-lactamases. Three C-2-substituted penicillin sulfone compounds (JDB/LN-1-255, JDB/LN-III-26, and JDB/ASR-II-292) showed low K(i) values for the OXA-1 beta-lactamase (0.70 +/- 0.14 --> 1.60 +/- 0.30 microM) and demonstrated significant K(i) improvements compared to the C-3-substituted cephalosporin sulfone (JDB/DVR-II-214), tazobactam, and clavulanic acid. The C-2-substituted penicillin sulfones JDB/ASR-II-292 and JDB/LN-1-255 also demonstrated low K(i)s for the OXA-10, -14, -17, and -24/40 beta-lactamases (0.20 +/- 0.04 --> 17 +/- 4 microM). Furthermore, JDB/LN-1-255 displayed stoichiometric inactivation of OXA-1 (the turnover number, i.e., the partitioning of the initial enzyme inhibitor complex between hydrolysis and enzyme inactivation [t(n)] = 0) and t(n)s ranging from 5 to 8 for the other OXA enzymes. Using mass spectroscopy to study the intermediates in the inactivation pathway, we determined that JDB/LN-1-255 inhibited OXA beta-lactamases by forming covalent adducts that do not fragment. On the basis of the substrate and inhibitor kinetics of OXA-1, we constructed a model showing that the C-3 carboxylate of JDB/LN-1-255 interacts with Ser115 and Thr213, the R-2 group at C-2 fits between the space created by the long B9 and B10 beta strands, and stabilizing hydrophobic interactions are formed between the pyridyl ring of JDB/LN-1-255 and Val116 and Leu161. By exploiting conserved structural and mechanistic features, JDB/LN-1-255 is a promising lead compound in the quest for effective inhibitors of OXA-type beta-lactamases.
Asunto(s)
Inhibidores Enzimáticos/farmacología , Penicilinas/farmacología , Inhibidores de beta-Lactamasas , Antibacterianos/química , Antibacterianos/farmacología , Dominio Catalítico , Cefaloridina/química , Cefalosporinas/química , Cefalosporinas/farmacología , Inhibidores Enzimáticos/química , Cinética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Oxacilina/química , Penicilinas/química , Proteínas Recombinantes/antagonistas & inhibidores , Especificidad por Sustrato , Sulfonas/química , Sulfonas/farmacología , Resistencia betalactámica , beta-Lactamasas/química , beta-Lactamasas/clasificaciónRESUMEN
IMPORTANCE: Deposition of the pathological α-synuclein (αSynP) in the brain is the hallmark of synucleinopathies, including Parkinson disease (PD), Lewy body dementia (LBD), and multiple system atrophy (MSA). Whether real-time quaking-induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA) assays can sensitively detect skin biomarkers for PD and non-PD synucleinopathies remains unknown. OBJECTIVE: To develop sensitive and specific skin biomarkers for antemortem diagnosis of PD and other synucleinopathies. DESIGN, SETTING, AND PARTICIPANTS: This retrospective and prospective diagnostic study evaluated autopsy and biopsy skin samples from neuropathologically and clinically diagnosed patients with PD and controls without PD. Autopsy skin samples were obtained at 3 medical centers from August 2016 to September 2019, and biopsy samples were collected from 3 institutions from August 2018 to November 2019. Based on neuropathological and clinical diagnoses, 57 cadavers with synucleinopathies and 73 cadavers with nonsynucleinopathies as well as 20 living patients with PD and 21 living controls without PD were included. Specifically, cadavers and participants had PD, LBD, MSA, Alzheimer disease, progressive supranuclear palsy, or corticobasal degeneration or were nonneurodegenerative controls (NNCs). A total of 8 approached biopsy participants either refused to participate in or were excluded from this study due to uncertain clinical diagnosis. Data were analyzed from September 2019 to April 2020. MAIN OUTCOMES AND MEASURES: Skin αSynP seeding activity was analyzed by RT-QuIC and PMCA assays. RESULTS: A total of 160 autopsied skin specimens from 140 cadavers (85 male cadavers [60.7%]; mean [SD] age at death, 76.8 [10.1] years) and 41 antemortem skin biopsies (27 male participants [66%]; mean [SD] age at time of biopsy, 65.3 [9.2] years) were analyzed. RT-QuIC analysis of αSynP seeding activity in autopsy abdominal skin samples from 47 PD cadavers and 43 NNCs revealed 94% sensitivity (95% CI, 85-99) and 98% specificity (95% CI, 89-100). As groups, RT-QuIC also yielded 93% sensitivity (95% CI, 85-97) and 93% specificity (95% CI, 83-97) among 57 cadavers with synucleinopathies (PD, LBD, and MSA) and 73 cadavers without synucleinopathies (Alzheimer disease, progressive supranuclear palsy, corticobasal degeneration, and NNCs). PMCA showed 82% sensitivity (95% CI, 76-88) and 96% specificity (95% CI, 85-100) with autopsy abdominal skin samples from PD cadavers. From posterior cervical and leg skin biopsy tissues from patients with PD and controls without PD, the sensitivity and specificity were 95% (95% CI, 77-100) and 100% (95% CI, 84-100), respectively, for RT-QuIC and 80% (95% CI, 49-96) and 90% (95% CI, 60-100) for PMCA. CONCLUSIONS AND RELEVANCE: This study provides proof-of-concept that skin αSynP seeding activity may serve as a novel biomarker for antemortem diagnoses of PD and other synucleinopathies.
RESUMEN
Brain function declines with age and is associated with diminishing mitochondrial integrity. The neuronal mitochondrial ultrastructural changes of young (4 months) and old (21 months) F344 rats supplemented with two mitochondrial metabolites, acetyl-L-carnitine (ALCAR, 0.2%[wt/vol] in the drinking water) and R-alpha-lipoic acid (LA, 0.1%[wt/wt] in the chow), were analysed using qualitative and quantitative electron microscopy techniques. Two independent morphologists blinded to sample identity examined and scored all electron micrographs. Mitochondria were examined in each micrograph, and each structure was scored according to the degree of injury. Controls displayed an age-associated significant decrease in the number of intact mitochondria (P = 0.026) as well as an increase in mitochondria with broken cristae (P < 0.001) in the hippocampus as demonstrated by electron microscopic observations. Neuronal mitochondrial damage was associated with damage in vessel wall cells, especially vascular endothelial cells. Dietary supplementation of young and aged animals increased the proliferation of intact mitochondria and reduced the density of mitochondria associated with vacuoles and lipofuscin. Feeding old rats ALCAR and LA significantly reduced the number of severely damaged mitochondria (P = 0.02) and increased the number of intact mitochondria (P < 0.001) in the hippocampus. These results suggest that feeding ALCAR with LA may ameliorate age-associated mitochondrial ultrastructural decay and are consistent with previous studies showing improved brain function.
Asunto(s)
Acetilcarnitina/farmacología , Envejecimiento/fisiología , Mitocondrias , Neuronas , Ácido Tióctico/farmacología , Acetilcarnitina/administración & dosificación , Animales , Suplementos Dietéticos , Hipocampo/citología , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Mitocondrias/ultraestructura , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Ácido Tióctico/administración & dosificaciónRESUMEN
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, with a prevalence of more than 1% after the age of 65 years. Mutations in the gene encoding leucine-rich repeat kinase-2 (LRRK2) have recently been linked to autosomal dominant, late-onset PD that is clinically indistinguishable from typical, idiopathic disease. LRRK2 is a multidomain protein containing several protein interaction motifs as well as dual enzymatic domains of GTPase and protein kinase activities. Disease-associated mutations are found throughout the multidomain structure of the protein. LRRK2, however, is unique among the PD-causing genes, because a missense mutation, G2019S, is a frequent determinant of not only familial but also sporadic PD. Thus, LRRK2 has emerged as a promising therapeutic target for combating PD. In this Mini-Review, we look at the current state of knowledge regarding the domain structure, amino acid substitutions, and potential functional roles of LRRK2.
Asunto(s)
Enfermedad de Parkinson/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Encéfalo/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina , Mutación , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de SeñalRESUMEN
Prion diseases are a group of fatal neurodegenerative disorders characterized by the accumulation of a misfolded form (PrP(Sc)) of the cellular prion protein (PrP(C)) in the brains of affected individuals. The conversion of PrP(C) to PrP(Sc) is thought to involve a change in protein conformation from a normal, primarily alpha-helical structure into a beta-sheet conformer. Few proteins have been identified that differentially interact with the two forms of PrP. It has been reported that plasminogen binds to PrP(Sc) from a variety of prion phenotypes. We have examined potential motifs within the kringle region that may be responsible for binding to PrP. We synthesized 12-15-mer peptides that contain small, repetitive stretches of amino acid residues found within the kringle domains of plasminogen. These synthetic peptides were found to capture PrP(Sc) from the brain homogenates of bovine spongiform encephalopathy affected cattle, chronic wasting disease affected elk, experimental scrapie of hamsters and that of subjects affected by Creutzfeldt-Jakob disease, without binding to PrP(C) in unaffected controls. Therefore, we have identified critical peptide motifs that may be important for protein-protein interactions in prion disease pathogenesis. The ability of these synthetic peptides to bind preferentially to PrP(Sc) suggests a potential application in the diagnosis of prion diseases.