Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 176(4): 831-843.e22, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30735634

RESUMEN

The cancer transcriptome is remarkably complex, including low-abundance transcripts, many not polyadenylated. To fully characterize the transcriptome of localized prostate cancer, we performed ultra-deep total RNA-seq on 144 tumors with rich clinical annotation. This revealed a linear transcriptomic subtype associated with the aggressive intraductal carcinoma sub-histology and a fusion profile that differentiates localized from metastatic disease. Analysis of back-splicing events showed widespread RNA circularization, with the average tumor expressing 7,232 circular RNAs (circRNAs). The degree of circRNA production was correlated to disease progression in multiple patient cohorts. Loss-of-function screening identified 11.3% of highly abundant circRNAs as essential for cell proliferation; for ∼90% of these, their parental linear transcripts were not essential. Individual circRNAs can have distinct functions, with circCSNK1G3 promoting cell growth by interacting with miR-181. These data advocate for adoption of ultra-deep RNA-seq without poly-A selection to interrogate both linear and circular transcriptomes.


Asunto(s)
Neoplasias de la Próstata/genética , ARN/genética , ARN/metabolismo , Perfilación de la Expresión Génica/métodos , Perfil Genético , Células HEK293 , Humanos , Masculino , MicroARNs/metabolismo , Próstata/metabolismo , Empalme del ARN/genética , ARN Circular , ARN no Traducido/genética , Análisis de Secuencia de ARN/métodos , Transcriptoma
2.
Cell ; 174(3): 549-563.e19, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-29937226

RESUMEN

Chromatin regulators play a broad role in regulating gene expression and, when gone awry, can lead to cancer. Here, we demonstrate that ablation of the histone demethylase LSD1 in cancer cells increases repetitive element expression, including endogenous retroviral elements (ERVs), and decreases expression of RNA-induced silencing complex (RISC) components. Significantly, this leads to double-stranded RNA (dsRNA) stress and activation of type 1 interferon, which stimulates anti-tumor T cell immunity and restrains tumor growth. Furthermore, LSD1 depletion enhances tumor immunogenicity and T cell infiltration in poorly immunogenic tumors and elicits significant responses of checkpoint blockade-refractory mouse melanoma to anti-PD-1 therapy. Consistently, TCGA data analysis shows an inverse correlation between LSD1 expression and CD8+ T cell infiltration in various human cancers. Our study identifies LSD1 as a potent inhibitor of anti-tumor immunity and responsiveness to immunotherapy and suggests LSD1 inhibition combined with PD-(L)1 blockade as a novel cancer treatment strategy.


Asunto(s)
Retrovirus Endógenos/genética , Histona Demetilasas/metabolismo , Complejo Silenciador Inducido por ARN/genética , Animales , Línea Celular Tumoral , Cromatina , Terapia Combinada , Regulación de la Expresión Génica/genética , Histona Demetilasas/genética , Humanos , Inmunidad Celular , Inmunoterapia , Interferón Tipo I , Células MCF-7 , Ratones , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/metabolismo , ARN Bicatenario/genética , Linfocitos T
3.
Cell ; 174(3): 564-575.e18, 2018 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-30033362

RESUMEN

The prostate cancer (PCa) risk-associated SNP rs11672691 is positively associated with aggressive disease at diagnosis. We showed that rs11672691 maps to the promoter of a short isoform of long noncoding RNA PCAT19 (PCAT19-short), which is in the third intron of the long isoform (PCAT19-long). The risk variant is associated with decreased and increased levels of PCAT19-short and PCAT19-long, respectively. Mechanistically, the risk SNP region is bifunctional with both promoter and enhancer activity. The risk variants of rs11672691 and its LD SNP rs887391 decrease binding of transcription factors NKX3.1 and YY1 to the promoter of PCAT19-short, resulting in weaker promoter but stronger enhancer activity that subsequently activates PCAT19-long. PCAT19-long interacts with HNRNPAB to activate a subset of cell-cycle genes associated with PCa progression, thereby promoting PCa tumor growth and metastasis. Taken together, these findings reveal a risk SNP-mediated promoter-enhancer switching mechanism underlying both initiation and progression of aggressive PCa.


Asunto(s)
Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Alelos , Línea Celular Tumoral , Elementos de Facilitación Genéticos/genética , Regulación Neoplásica de la Expresión Génica/genética , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Polimorfismo de Nucleótido Simple/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Isoformas de ARN/genética , Factores de Riesgo , Factores de Transcripción/metabolismo , Factor de Transcripción YY1/metabolismo
4.
Mol Cell ; 83(15): 2692-2708.e7, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37478845

RESUMEN

N6-methyladenosine (m6A) of mRNAs modulated by the METTL3-METTL14-WTAP-RBM15 methyltransferase complex and m6A demethylases such as FTO play important roles in regulating mRNA stability, splicing, and translation. Here, we demonstrate that FTO-IT1 long noncoding RNA (lncRNA) was upregulated and positively correlated with poor survival of patients with wild-type p53-expressing prostate cancer (PCa). m6A RIP-seq analysis revealed that FTO-IT1 knockout increased mRNA m6A methylation of a subset of p53 transcriptional target genes (e.g., FAS, TP53INP1, and SESN2) and induced PCa cell cycle arrest and apoptosis. We further showed that FTO-IT1 directly binds RBM15 and inhibits RBM15 binding, m6A methylation, and stability of p53 target mRNAs. Therapeutic depletion of FTO-IT1 restored mRNA m6A level and expression of p53 target genes and inhibited PCa growth in mice. Our study identifies FTO-IT1 lncRNA as a bona fide suppressor of the m6A methyltransferase complex and p53 tumor suppression signaling and nominates FTO-IT1 as a potential therapeutic target of cancer.


Asunto(s)
Neoplasias , ARN Largo no Codificante , Masculino , Ratones , Animales , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética , Adenosina/metabolismo , ARN Mensajero/genética , Metiltransferasas/genética , Metiltransferasas/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(33): e2220472120, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37549269

RESUMEN

Dysregulation of histone lysine methyltransferases and demethylases is one of the major mechanisms driving the epigenetic reprogramming of transcriptional networks in castration-resistant prostate cancer (CRPC). In addition to their canonical histone targets, some of these factors can modify critical transcription factors, further impacting oncogenic transcription programs. Our recent report demonstrated that LSD1 can demethylate the lysine 270 of FOXA1 in prostate cancer (PCa) cells, leading to the stabilization of FOXA1 chromatin binding. This process enhances the activities of the androgen receptor and other transcription factors that rely on FOXA1 as a pioneer factor. However, the identity of the methyltransferase responsible for FOXA1 methylation and negative regulation of the FOXA1-LSD1 oncogenic axis remains unknown. SETD7 was initially identified as a transcriptional activator through its methylation of histone 3 lysine 4, but its function as a methyltransferase on nonhistone substrates remains poorly understood, particularly in the context of PCa progression. In this study, we reveal that SETD7 primarily acts as a transcriptional repressor in CRPC cells by functioning as the major methyltransferase targeting FOXA1-K270. This methylation disrupts FOXA1-mediated transcription. Consistent with its molecular function, we found that SETD7 confers tumor suppressor activity in PCa cells. Moreover, loss of SETD7 expression is significantly associated with PCa progression and tumor aggressiveness. Overall, our study provides mechanistic insights into the tumor-suppressive and transcriptional repression activities of SETD7 in mediating PCa progression and therapy resistance.


Asunto(s)
Histonas , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Histonas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/genética , Lisina/metabolismo , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Metiltransferasas/metabolismo , Histona Demetilasas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Factor Nuclear 3-alfa del Hepatocito/genética , Factor Nuclear 3-alfa del Hepatocito/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(39): e2205509119, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-36129942

RESUMEN

Androgen receptor (AR) messenger RNA (mRNA) alternative splicing variants (AR-Vs) are implicated in castration-resistant progression of prostate cancer (PCa), although the molecular mechanism underlying the genesis of AR-Vs remains poorly understood. The CDK12 gene is often deleted or mutated in PCa and CDK12 deficiency is known to cause homologous recombination repair gene alteration or BRCAness via alternative polyadenylation (APA). Here, we demonstrate that pharmacological inhibition or genetic inactivation of CDK12 induces AR gene intronic (intron 3) polyadenylation (IPA) usage, AR-V expression, and PCa cell resistance to the antiandrogen enzalutamide (ENZ). We further show that AR binds to the CCNK gene promoter and up-regulates CYCLIN K expression. In contrast, ENZ decreases AR occupancy at the CCNK gene promoter and suppresses CYCLIN K expression. Similar to the effect of the CDK12 inhibitor, CYCLIN K degrader or ENZ treatment promotes AR gene IPA usage, AR-V expression, and ENZ-resistant growth of PCa cells. Importantly, we show that targeting BRCAness induced by CYCLIN K down-regulation with the PARP inhibitor overcomes ENZ resistance. Our findings identify CYCLIN K down-regulation as a key driver of IPA usage, hormonal therapy-induced AR-V expression, and castration resistance in PCa. These results suggest that hormonal therapy-induced AR-V expression and therapy resistance are vulnerable to PARP inhibitor treatment.


Asunto(s)
Antineoplásicos , Ciclinas , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Antagonistas de Andrógenos/farmacología , Antineoplásicos/farmacología , Benzamidas/farmacología , Línea Celular Tumoral , Ciclinas/genética , Regulación hacia Abajo , Resistencia a Antineoplásicos/genética , Humanos , Intrones , Masculino , Nitrilos/farmacología , Feniltiohidantoína/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poliadenilación/genética , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , ARN Mensajero/genética , Receptores Androgénicos/genética
7.
BMC Cancer ; 24(1): 744, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890593

RESUMEN

BACKGROUND: Tumor hypoxia is associated with prostate cancer (PCa) treatment resistance and poor prognosis. Pimonidazole (PIMO) is an investigational hypoxia probe used in clinical trials. A better understanding of the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia is needed for future clinical application. Here, we investigated the clinical significance and molecular alterations underpinning PIMO-labeled tumor hypoxia in patients with localized PCa, in order to apply PIMO as a prognostic tool and to identify potential biomarkers for future clinical translation. METHODS: A total of 39 patients with localized PCa were recruited and administered oral PIMO before undergoing radical prostatectomy (RadP). Immunohistochemical staining for PIMO was performed on 37 prostatectomy specimens with staining patterns evaluated and clinical association analyzed. Whole genome bisulfite sequencing was performed using laser-capture of microdissected specimen sections comparing PIMO positive and negative tumor areas. A hypoxia related methylation molecular signature was generated by integrating the differentially methylated regions with previously established RNA-seq datasets. RESULTS: Three PIMO staining patterns were distinguished: diffuse, focal, and comedo-like. The comedo-like staining pattern was more commonly associated with adverse pathology. PIMO-defined hypoxia intensity was positively correlated with advanced pathologic stage, tumor invasion, and cribriform and intraductal carcinoma morphology. The generated DNA methylation signature was found to be a robust hypoxia biomarker, which could risk-stratify PCa patients across multiple clinical datasets, as well as be applicable in other cancer types. CONCLUSIONS: Oral PIMO unveiled clinicopathologic features of disease aggressiveness in localized PCa. The generated DNA methylation signature is a novel and robust hypoxia biomarker that has the potential for future clinical translation.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Nitroimidazoles , Prostatectomía , Neoplasias de la Próstata , Humanos , Masculino , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/cirugía , Neoplasias de la Próstata/metabolismo , Anciano , Persona de Mediana Edad , Hipoxia Tumoral/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Pronóstico , Administración Oral
8.
Artículo en Inglés | MEDLINE | ID: mdl-38407401

RESUMEN

A 67-year-old male presented with symptomatic bradycardia caused by atrial fibrillation and underwent His bundle pacing (HBP) and left bundle branch pacing (LBBP). Electrocardiography (ECG) revealed a complete right bundle branch block (RBBB). John Jiang's connecting cable was used during the transventricular septal process. An interesting dynamic retrograde His bundle potential (RHP) was recorded with uninterrupted lead screws.

9.
Angew Chem Int Ed Engl ; 63(18): e202401291, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38445723

RESUMEN

The transmission of chiral information between the molecular, meso and microscopic scales is a facet of biology that remains challenging to understand mechanistically and to mimic with artificial systems. Here we demonstrate that the dynamic change in the expression of the chirality of a rotaxane can be transduced into a change in pitch of a soft matter system. Shuttling the position of the macrocycle from far-away-from to close-to a point-chiral center on the rotaxane axle changes the expression of the chiral information that is transmitted across length scales; from nanometer scale constitutional chirality that affects the conformation of the macrocycle, to the centimeter scale chirality of the liquid crystal phase, significantly changing the pitch length of the chiral nematic structure.

10.
Ann Noninvasive Electrocardiol ; 28(1): e12999, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35904508

RESUMEN

We reported a 65-year-old man with symptomatic bradycardia caused by chronic atrial fibrillation who underwent pacemaker implantation by left bundle branch pacing (LBBP) via right subclavian vein (RSV) approach. A tricuspid valve annulus (TVA) angiography was performed, and a different connecting cable that can monitor electrocardiograms (ECG) and intracardiac electrograms (EGM) in real time was used during the process. By TVA angiography, we could easily find the ideal location of LBBP; a new connecting cable helped us avoid perforation and guide effective endpoint without the need to stop pacing. The case showed that it was feasible and safe to use the new method for LBBP through RSV route.


Asunto(s)
Fascículo Atrioventricular , Estimulación Cardíaca Artificial , Masculino , Humanos , Anciano , Estimulación Cardíaca Artificial/métodos , Vena Subclavia/diagnóstico por imagen , Electrocardiografía/métodos , Sistema de Conducción Cardíaco
11.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(8): 843-848, 2023 Aug 15.
Artículo en Zh | MEDLINE | ID: mdl-37668033

RESUMEN

OBJECTIVES: To explore the etiology composition and outcomes of pediatric chronic critical illness (PCCI) in the pediatric intensive care unit (PICU). METHODS: The children who were hospitalized in the PICU of Dongguan Children's Hospital Affiliated to Guangdong Medical University and met the diagnostic criteria for PCCI from January 2017 to December 2022 were included in the study. The etiology of the children was classified based on their medical records and discharge diagnoses. Relevant clinical data during hospitalization were collected and analyzed. RESULTS: Among the 3 955 hospitalized children in the PICU from January 2017 to December 2022, 321 cases (8.12%) met the diagnostic criteria for PCCI. Among the 321 cases, the most common etiology was infection (71.3%, 229 cases), followed by unintentional injury (12.8%, 41 cases), postoperation (5.9%, 19 cases), tumors/immune system diseases (5.0%, 16 cases), and genetic and chromosomal diseases (5.0%, 16 cases). Among the 321 cases, 249 cases (77.6%) were discharged after improvement, 37 cases (11.5%) were discharged at the request of the family, and 35 cases (10.9%) died in the hospital. Among the deaths, infection accounted for 74% (26/35), unintentional injury accounted for 17% (6/35), tumors/immune system diseases accounted for 6% (2/35), and genetic and chromosomal diseases accounted for 3% (1/35). From 2017 to 2022, the proportion of PCCI in PICU diseases showed an increasing trend year by year (P<0.05). Among the 321 children with PCCI, there were 148 infants and young children (46.1%), 57 preschool children (17.8%), 54 school-aged children (16.8%), and 62 adolescents (19.3%), with the highest proportion in the infant and young children group (P<0.05). The in-hospital mortality rates of the four age groups were 14.9% (22/148), 8.8% (5/57), 5.6% (3/54), and 8.1% (5/62), respectively. The infant and young children group had the highest mortality rate, but there was no statistically significant difference among the four groups (P>0.05). CONCLUSIONS: The proportion of PCCI in PICU diseases is increasing, and the main causes are infection and unintentional injury. The most common cause of death in children with PCCI is infection. The PCCI patient population is mainly infants and young children, and the in-hospital mortality rate of infant and young children with PCCI is relatively high.


Asunto(s)
Niño Hospitalizado , Enfermedad Crítica , Adolescente , Lactante , Preescolar , Humanos , Niño , Pronóstico , Enfermedad Crónica , Unidades de Cuidado Intensivo Pediátrico
12.
Trends Genet ; 35(11): 840-851, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31623872

RESUMEN

The transcriptome of prostate cancer is highly heterogeneous, with noncoding transcripts being essential players. Long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) are two unique classes of noncoding RNA drawing increasing attention. Biologically, they have intriguing properties with important regulatory functions. Clinically, they present as promising biomarkers and therapeutic targets. Recent advancements in technologies have opened up new directions for noncoding RNA research, which include RNA-protein interaction, RNA secondary structure, and spatial transcriptomics. Furthermore, recent work has also evaluated the clinical applications of these noncoding RNAs in noninvasive liquid biopsy and RNA-based therapies. In this review, we summarize recent findings on lncRNAs and circRNAs in prostate cancer, discuss their clinical utilities, and highlight these exciting areas of research.


Asunto(s)
Biomarcadores de Tumor , Predisposición Genética a la Enfermedad , Neoplasias de la Próstata/genética , ARN Largo no Codificante/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias de la Próstata/metabolismo , ARN Circular/genética , ARN Largo no Codificante/química , Proteínas de Unión al ARN/metabolismo , Relación Estructura-Actividad
13.
Proc Natl Acad Sci U S A ; 114(13): 3473-3478, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289232

RESUMEN

Steady-state gene expression across the cell cycle has been studied extensively. However, transcriptional gene regulation and the dynamics of histone modification at different cell-cycle stages are largely unknown. By applying a combination of global nuclear run-on sequencing (GRO-seq), RNA sequencing (RNA-seq), and histone-modification Chip sequencing (ChIP-seq), we depicted a comprehensive transcriptional landscape at the G0/G1, G1/S, and M phases of breast cancer MCF-7 cells. Importantly, GRO-seq and RNA-seq analysis identified different cell-cycle-regulated genes, suggesting a lag between transcription and steady-state expression during the cell cycle. Interestingly, we identified genes actively transcribed at early M phase that are longer in length and have low expression and are accompanied by a global increase in active histone 3 lysine 4 methylation (H3K4me2) and histone 3 lysine 27 acetylation (H3K27ac) modifications. In addition, we identified 2,440 cell-cycle-regulated enhancer RNAs (eRNAs) that are strongly associated with differential active transcription but not with stable expression levels across the cell cycle. Motif analysis of dynamic eRNAs predicted Kruppel-like factor 4 (KLF4) as a key regulator of G1/S transition, and this identification was validated experimentally. Taken together, our combined analysis characterized the transcriptional and histone-modification profile of the human cell cycle and identified dynamic transcriptional signatures across the cell cycle.


Asunto(s)
Ciclo Celular , Transcripción Genética , Inmunoprecipitación de Cromatina , Histonas/genética , Histonas/metabolismo , Humanos , Factor 4 Similar a Kruppel , Células MCF-7 , Análisis de Secuencia de ARN
14.
J Am Chem Soc ; 140(51): 17992-17998, 2018 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-30445811

RESUMEN

Inspired by natural biomolecular machines, synthetic molecular-level machines have been proven to perform well-defined mechanical tasks and measurable work. To mimic the function of channel proteins, we herein report the development of a synthetic molecular shuttle, [2]rotaxane 3, as a unimolecular vehicle that can be inserted into lipid bilayers to perform passive ion transport through its stochastic shuttling motion. The [2]rotaxane molecular shuttle is composed of an amphiphilic molecular thread with three binding stations, which is interlocked in a macrocycle wheel component that tethers a K+ carrier. The structural characteristics enable the rotaxane to transport ions across the lipid bilayers, similar to a cable car, transporting K+ with an EC50 value of 1.0 µM (3.0 mol % relative to lipid). We expect that this simple molecular machine will provide new opportunities for developing more effective and selective ion transporters.


Asunto(s)
Transporte Iónico , Membrana Dobles de Lípidos/metabolismo , Potasio/metabolismo , Rotaxanos/metabolismo , Concentración de Iones de Hidrógeno , Modelos Químicos , Rotaxanos/síntesis química , Rotaxanos/química
15.
Proc Natl Acad Sci U S A ; 111(46): E4946-53, 2014 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-25369933

RESUMEN

Notch is needed for T-cell development and is a common oncogenic driver in T-cell acute lymphoblastic leukemia. The protooncogene c-Myc (Myc) is a critical target of Notch in normal and malignant pre-T cells, but how Notch regulates Myc is unknown. Here, we identify a distal enhancer located >1 Mb 3' of human and murine Myc that binds Notch transcription complexes and physically interacts with the Myc proximal promoter. The Notch1 binding element in this region activates reporter genes in a Notch-dependent, cell-context-specific fashion that requires a conserved Notch complex binding site. Acute changes in Notch activation produce rapid changes in H3K27 acetylation across the entire enhancer (a region spanning >600 kb) that correlate with Myc expression. This broad Notch-influenced region comprises an enhancer region containing multiple domains, recognizable as discrete H3K27 acetylation peaks. Leukemia cells selected for resistance to Notch inhibitors express Myc despite epigenetic silencing of enhancer domains near the Notch transcription complex binding sites. Notch-independent expression of Myc in resistant cells is highly sensitive to inhibitors of bromodomain containing 4 (Brd4), a change in drug sensitivity that is accompanied by preferential association of the Myc promoter with more 3' enhancer domains that are strongly dependent on Brd4 for function. These findings indicate that altered long-range enhancer activity can mediate resistance to targeted therapies and provide a mechanistic rationale for combined targeting of Notch and Brd4 in leukemia.


Asunto(s)
Elementos de Facilitación Genéticos/genética , Regulación Leucémica de la Expresión Génica/genética , Genes myc , Proteínas de Neoplasias/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Receptor Notch1/metabolismo , Animales , Secuencia de Bases , Proteínas de Ciclo Celular , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , Genes Reporteros , Estudio de Asociación del Genoma Completo , Histonas/metabolismo , Humanos , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/antagonistas & inhibidores , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Regiones Promotoras Genéticas/genética , Conformación Proteica , Receptor Notch1/antagonistas & inhibidores , Alineación de Secuencia , Homología de Secuencia de Ácido Nucleico , Factores de Transcripción/antagonistas & inhibidores , Transcripción Genética
16.
BMC Bioinformatics ; 17(1): 404, 2016 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-27716038

RESUMEN

BACKGROUND: Transcription factor binding, histone modification, and chromatin accessibility studies are important approaches to understanding the biology of gene regulation. ChIP-seq and DNase-seq have become the standard techniques for studying protein-DNA interactions and chromatin accessibility respectively, and comprehensive quality control (QC) and analysis tools are critical to extracting the most value from these assay types. Although many analysis and QC tools have been reported, few combine ChIP-seq and DNase-seq data analysis and quality control in a unified framework with a comprehensive and unbiased reference of data quality metrics. RESULTS: ChiLin is a computational pipeline that automates the quality control and data analyses of ChIP-seq and DNase-seq data. It is developed using a flexible and modular software framework that can be easily extended and modified. ChiLin is ideal for batch processing of many datasets and is well suited for large collaborative projects involving ChIP-seq and DNase-seq from different designs. ChiLin generates comprehensive quality control reports that include comparisons with historical data derived from over 23,677 public ChIP-seq and DNase-seq samples (11,265 datasets) from eight literature-based classified categories. To the best of our knowledge, this atlas represents the most comprehensive ChIP-seq and DNase-seq related quality metric resource currently available. These historical metrics provide useful heuristic quality references for experiment across all commonly used assay types. Using representative datasets, we demonstrate the versatility of the pipeline by applying it to different assay types of ChIP-seq data. The pipeline software is available open source at https://github.com/cfce/chilin . CONCLUSION: ChiLin is a scalable and powerful tool to process large batches of ChIP-seq and DNase-seq datasets. The analysis output and quality metrics have been structured into user-friendly directories and reports. We have successfully compiled 23,677 profiles into a comprehensive quality atlas with fine classification for users.


Asunto(s)
Inmunoprecipitación de Cromatina/métodos , Desoxirribonucleasas/genética , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Control de Calidad , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Mapeo Cromosómico , Interpretación Estadística de Datos , Bases de Datos Genéticas , Desoxirribonucleasas/metabolismo , Humanos
17.
Cancer Discov ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38922581

RESUMEN

Comprehensive m6A epitranscriptome profiling of primary tumors remains largely uncharted. Here, we profiled the m6A epitranscriptome of 10 non-neoplastic lung (NL) tissues and 51 lung adenocarcinoma (LUAD) tumors, integrating the corresponding transcriptome, proteome and extensive clinical annotations. We identified distinct clusters and genes that were exclusively linked to disease progression through m6A modifications. In comparison with NL tissues, we identified 430 transcripts to be hypo-methylated and 222 to be hyper-methylated in tumors. Among these genes, EML4 emerged as a novel metastatic driver, displaying significant hyper-methylation in tumors. m6A modification promoted the translation of EML4, leading to its widespread overexpression in primary tumors. Functionally, EML4 modulated cytoskeleton dynamics through interacting with ARPC1A, enhancing lamellipodia formation, cellular motility, local invasion, and metastasis. Clinically, high EML4 protein abundance correlated with features of metastasis. METTL3 small molecule inhibitor markedly diminished both EML4 m6A and protein abundance, and efficiently suppressed lung metastases in vivo.

18.
Front Oncol ; 13: 1185013, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37692852

RESUMEN

Liquid biopsy is emerging as an intriguing tool in clinical disease detection and monitoring. Compared to a standard tissue biopsy, performing a liquid biopsy incurs minimal invasiveness, captures comprehensive disease representation, and can be more sensitive at an early stage. Recent genome-wide liquid biopsy studies in prostate cancer analyzing plasma samples have provided insights into the genome and epigenome dynamics during disease progression. In-depth genomic sequencing can offer a comprehensive understanding of cancer evolution, enabling more accurate clinical decision-making. Furthermore, exploring beyond the DNA sequence itself provides opportunities to investigate the regulatory mechanisms underlying various disease phenotypes. Here, we summarize these advances and offer prospects for their future application.

19.
Nat Commun ; 14(1): 1787, 2023 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-36997534

RESUMEN

MYC is a well characterized oncogenic transcription factor in prostate cancer, and CTCF is the main architectural protein of three-dimensional genome organization. However, the functional link between the two master regulators has not been reported. In this study, we find that MYC rewires prostate cancer chromatin architecture by interacting with CTCF protein. Through combining the H3K27ac, AR and CTCF HiChIP profiles with CRISPR deletion of a CTCF site upstream of MYC gene, we show that MYC activation leads to profound changes of CTCF-mediated chromatin looping. Mechanistically, MYC colocalizes with CTCF at a subset of genomic sites, and enhances CTCF occupancy at these loci. Consequently, the CTCF-mediated chromatin looping is potentiated by MYC activation, resulting in the disruption of enhancer-promoter looping at neuroendocrine lineage plasticity genes. Collectively, our findings define the function of MYC as a CTCF co-factor in three-dimensional genome organization.


Asunto(s)
Cromatina , Neoplasias de la Próstata , Masculino , Humanos , Cromatina/genética , Factor de Unión a CCCTC/metabolismo , Regulación de la Expresión Génica , Genes myc , Neoplasias de la Próstata/genética , Sitios de Unión
20.
Cancer Cell ; 41(8): 1427-1449.e12, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37478850

RESUMEN

Tumor mutational burden and heterogeneity has been suggested to fuel resistance to many targeted therapies. The cytosine deaminase APOBEC proteins have been implicated in the mutational signatures of more than 70% of human cancers. However, the mechanism underlying how cancer cells hijack the APOBEC mediated mutagenesis machinery to promote tumor heterogeneity, and thereby foster therapy resistance remains unclear. We identify SYNCRIP as an endogenous molecular brake which suppresses APOBEC-driven mutagenesis in prostate cancer (PCa). Overactivated APOBEC3B, in SYNCRIP-deficient PCa cells, is a key mutator, representing the molecular source of driver mutations in some frequently mutated genes in PCa, including FOXA1, EP300. Functional screening identifies eight crucial drivers for androgen receptor (AR)-targeted therapy resistance in PCa that are mutated by APOBEC3B: BRD7, CBX8, EP300, FOXA1, HDAC5, HSF4, STAT3, and AR. These results uncover a cell-intrinsic mechanism that unleashes APOBEC-driven mutagenesis, which plays a significant role in conferring AR-targeted therapy resistance in PCa.


Asunto(s)
Neoplasias de la Próstata , Masculino , Humanos , Mutagénesis , Mutación , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Receptores Androgénicos/genética , Proteínas Cromosómicas no Histona , Ribonucleoproteínas Nucleares Heterogéneas , Citidina Desaminasa , Antígenos de Histocompatibilidad Menor , Complejo Represivo Polycomb 1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA