RESUMEN
The interface between electron-donating (D) and electron-accepting (A) materials in organic photovoltaic (OPV) devices is commonly probed by charge-transfer (CT) electroluminescence (EL) measurements to estimate the CT energy, which critically relates to device open-circuit voltage. It is generally assumed that during CT-EL injected charges recombine at close-to-equilibrium energies in their respective density of states (DOS). Here, we explicitly quantify that CT-EL instead originates from higher-energy DOS site distributions significantly above DOS equilibrium energies. To demonstrate this, we have developed a quantitative and experimentally calibrated model for CT-EL at organic D/A heterointerfaces, which simultaneously accounts for the charge transport physics in an energetically disordered DOS and the Franck-Condon broadening. The 0-0 CT-EL transition lineshape is numerically calculated using measured energetic disorder values as input to 3-dimensional kinetic Monte Carlo simulations. We account for vibrational CT-EL overtones by selectively measuring the dominant vibrational phonon-mode energy governing CT luminescence at the D/A interface using fluorescence line-narrowing spectroscopy. Our model numerically reproduces the measured CT-EL spectra and their bias dependence and reveals the higher-lying manifold of DOS sites responsible for CT-EL. Lowest-energy CT states are situated â¼180 to 570 meV below the 0-0 CT-EL transition, enabling photogenerated carrier thermalization to these low-lying DOS sites when the OPV device is operated as a solar cell rather than as a light-emitting diode. Nonequilibrium site distribution rationalizes the experimentally observed weak current-density dependence of CT-EL and poses fundamental questions on reciprocity relations relating light emission to photovoltaic action and regarding minimal attainable photovoltaic energy conversion losses in OPV devices.
RESUMEN
High-index semiconductor nanoantennae represent a powerful platform for nonlinear photon generation. Devices with reduced footprints are pivotal for higher integration capacity and energy efficiency in photonic integrated circuitry (PIC). Here, we report on a deep subwavelength nonlinear antenna based on dilute nitride GaNP nanowires (NWs), whose second harmonic generation (SHG) shows a 5-fold increase by incorporating â¼0.45% of nitrogen (N), in comparison with GaP counterpart. Further integrating with a gold (Au) thin film-based hybrid cavity achieves a significantly boosted SHG output by a factor of â¼380, with a nonlinear conversion efficiency up to 9.4 × 10-6 W-1. In addition, high-density zinc blende (ZB) twin phases were found to tailor the nonlinear radiation profile via dipolar interference, resulting in a highly symmetric polarimetric pattern well-suited for coupling with polarization nano-optics. Our results manifest dilute nitride nanoantenna as promising building blocks for future chip-based nonlinear photonic technology.
RESUMEN
Doping of organic semiconductors is crucial for the operation of organic (opto)electronic and electrochemical devices. Typically, this is achieved by adding heterogeneous dopant molecules to the polymer bulk, often resulting in poor stability and performance due to dopant sublimation or aggregation. In small-molecule donor-acceptor systems, charge transfer can yield high and stable electrical conductivities, an approach not yet explored in all-conjugated polymer systems. Here, we report ground-state electron transfer in all-polymer donor-acceptor heterojunctions. Combining low-ionization-energy polymers with high-electron-affinity counterparts yields conducting interfaces with resistivity values five to six orders of magnitude lower than the separate single-layer polymers. The large decrease in resistivity originates from two parallel quasi-two-dimensional electron and hole distributions reaching a concentration of â¼1013 cm-2. Furthermore, we transfer the concept to three-dimensional bulk heterojunctions, displaying exceptional thermal stability due to the absence of molecular dopants. Our findings hold promise for electro-active composites of potential use in, for example, thermoelectrics and wearable electronics.
RESUMEN
A coherent photon source emitting at near-infrared (NIR) wavelengths is at the heart of a wide variety of applications ranging from telecommunications and optical gas sensing to biological imaging and metrology. NIR-emitting semiconductor nanowires (NWs), acting both as a miniaturized optical resonator and as a photonic gain medium, are among the best-suited nanomaterials to achieve such goals. In this study, we demonstrate the NIR lasing at 1 µm from GaAs/GaNAs/GaAs core/shell/cap dilute nitride nanowires with only 2.5% nitrogen. The achieved lasing is characterized by an S-shape pump-power dependence and narrowing of the emission line width. Through examining the lasing performance from a set of different single NWs, a threshold gain, gth, of 4100-4800 cm-1, was derived with a spontaneous emission coupling factor, ß, up to 0.8, which demonstrates the great potential of such nanophotonic material. The lasing mode was found to arise from the fundamental HE11a mode of the Fabry-Perot cavity from a single NW, exhibiting optical polarization along the NW axis. Based on temperature dependence of the lasing emission, a high characteristic temperature, T0, of 160 (±10) K is estimated. Our results, therefore, demonstrate a promising alternative route to achieve room-temperature NIR NW lasers thanks to the excellent alloy tunability and superior optical performance of such dilute nitride materials.
RESUMEN
We report on the first successful growth of wurtzite (WZ) GaBiAs nanowires (NWs) and reveal the effects of Bi incorporation on the electronic band structure by using polarization-resolved optical spectroscopies performed on individual NWs. Experimental evidence of a decrease in the band-gap energy and an upward shift of the topmost three valence subbands upon the incorporation of Bi atoms is provided, whereas the symmetry and ordering of the valence band states remain unchanged, that is, Γ9, Γ7, and Γ7 within the current range of Bi compositions. The extraordinary valence band structure of WZ GaBiAs NWs is explained by anisotropic hybridization and anticrossing between p-like Bi states and the extended valence band states of host WZ GaAs. Moreover, the incorporation of Bi into GaAs is found to significantly reduce the temperature sensitivity of the band-gap energy in WZ GaBiAs NWs. Our work therefore demonstrates that utilizing dilute bismide alloys provides new avenues for band-gap engineering and thus photonic engineering with NWs.
RESUMEN
The open-circuit voltage of organic solar cells is usually lower than the values achieved in inorganic or perovskite photovoltaic devices with comparable bandgaps. Energy losses during charge separation at the donor-acceptor interface and non-radiative recombination are among the main causes of such voltage losses. Here we combine spectroscopic and quantum-chemistry approaches to identify key rules for minimizing voltage losses: (1) a low energy offset between donor and acceptor molecular states and (2) high photoluminescence yield of the low-gap material in the blend. Following these rules, we present a range of existing and new donor-acceptor systems that combine efficient photocurrent generation with electroluminescence yield up to 0.03%, leading to non-radiative voltage losses as small as 0.21 V. This study provides a rationale to explain and further improve the performance of recently demonstrated high-open-circuit-voltage organic solar cells.
RESUMEN
Dilute nitrides are novel III-V-N semiconductor alloys promising for a great variety of applications ranging from nanoscale light emitters and solar cells to energy production via photoelectrochemical reactions and to nano-spintronics. These alloys have become available in the one-dimensional geometry only most recently, thanks to the advances in the nanowire (NW) growth utilizing molecular beam epitaxy. In this review we will summarize growth approaches currently utilized for the fabrication of such novel dilute nitride-based NWs, discuss their structural, defect-related and optical properties, as well as provide several examples of their potential applications.
RESUMEN
Cathodoluminescence (CL) and micro-photoluminescence spectroscopies are employed to investigate effects of structural defects on carrier recombination in GaNAsP nanowires (NWs) grown by molecular beam epitaxy on Si substrates. In the NWs with a low N content of 0.08%, these defects are found to promote non-radiative (NR) recombination, which causes spatial variation of the CL peak position and its intensity. Unexpectedly, these detrimental effects can be suppressed even by a small increase in the nitrogen composition from 0.08% to 0.12%. This is attributed to more efficient trapping of excited carriers/excitons to the localized states promoted by N-induced localization and also the presence of other NR channels. At room temperature, the structural defects no longer dominate in carrier recombination even in the NWs with the lower nitrogen content, likely due to increasing importance of other recombination channels. Our work underlines the need in eliminating important thermally activated NR defects, other than the structural defects, for future optoelectronic applications of these NWs.
RESUMEN
Nanowire (NW) lasers operating in the near-infrared spectral range are of significant technological importance for applications in telecommunications, sensing, and medical diagnostics. So far, lasing within this spectral range has been achieved using GaAs/AlGaAs, GaAs/GaAsP, and InGaAs/GaAs core/shell NWs. Another promising III-V material, not yet explored in its lasing capacity, is the dilute nitride GaNAs. In this work, we demonstrate, for the first time, optically pumped lasing from the GaNAs shell of a single GaAs/GaNAs core/shell NW. The characteristic "S"-shaped pump power dependence of the lasing intensity, with the concomitant line width narrowing, is observed, which yields a threshold gain, gth, of 3300 cm-1 and a spontaneous emission coupling factor, ß, of 0.045. The dominant lasing peak is identified to arise from the HE21b cavity mode, as determined from its pronounced emission polarization along the NW axis combined with theoretical calculations of lasing threshold for guided modes inside the nanowire. Even without intentional passivation of the NW surface, the lasing emission can be sustained up to 150 K. This is facilitated by the improved surface quality due to nitrogen incorporation, which partly suppresses the surface-related nonradiative recombination centers via nitridation. Our work therefore represents the first step toward development of room-temperature infrared NW lasers based on dilute nitrides with extended tunability in the lasing wavelength.
RESUMEN
We report on identification and control of important nonradiative recombination centers in GaNP coaxial nanowires (NWs) grown on Si substrates in an effort to significantly increase light emitting efficiency of these novel nanostructures promising for a wide variety of optoelectronic and photonic applications. A point defect complex, labeled as DD1 and consisting of a P atom with a neighboring partner aligned along a crystallographic ⟨ 111 ⟩ axis, is identified by optically detected magnetic resonance as a dominant nonradiative recombination center that resides mainly on the surface of the NWs and partly at the heterointerfaces. The formation of DD1 is found to be promoted by the presence of nitrogen and can be suppressed by reducing the strain between the core and shell layers, as well as by protecting the optically active shell by an outer passivating shell. Growth modes employed during the NW growth are shown to play a role. On the basis of these results, we identify the GaP/GaN(y)P(1-y)/GaN(x)P(1-x) (x < y) core/shell/shell NW structure, where the GaN(y)P(1-y) inner shell with the highest nitrogen content serves as an active light-emitting layer, as the optimized and promising design for efficient light emitters based on GaNP NWs.
RESUMEN
III-V semiconductor nanowires (NWs) have gained significant interest as building blocks in novel nanoscale devices. The one-dimensional (1D) nanostructure architecture allows one to extend band structure engineering beyond quantum confinement effects by utilizing formation of different crystal phases that are thermodynamically unfavorable in bulk materials. It is therefore of crucial importance to understand the influence of variations in the NWs crystal structure on their fundamental physical properties. In this work we investigate effects of structural polytypism on the optical properties of gallium phosphide and GaP/GaNP core/shell NW structures by a correlative investigation on the structural and optical properties of individual NWs. The former is monitored by transmission electron microscopy, whereas the latter is studied via cathodoluminescence (CL) mapping. It is found that structural defects, such as rotational twins in zinc blende (ZB) GaNP, have detrimental effects on light emission intensity at low temperatures by promoting nonradiative recombination processes. On the other hand, formation of the wurtzite (WZ) phase does not notably affect the CL intensity neither in GaP nor in the GaNP alloy. This suggests that zone folding in WZ GaP does not enhance its radiative efficiency, consistent with theoretical predictions. We also show that the change in the lattice structure have negligible effects on the bandgap energies of the GaNP alloys, at least within the range of the investigated nitrogen compositions of <2%. Both WZ and ZB GaNP are found to have a significantly higher efficiency of radiative recombination as compared with that in parental GaP, promising for potential applications of GaNP NWs as efficient nanoscale light emitters within the desirable amber-red spectral range.
Asunto(s)
Nanocables/química , Galio/química , Nanocables/ultraestructura , Zinc/químicaRESUMEN
Semiconductor nanowires (NWs) are attracting increasing interest as nanobuilding blocks for optoelectronics and photonics. A novel material system that is highly suitable for these applications are GaNP NWs. In this article, we show that individual GaP/GaNP core/shell nanowires (NWs) grown by molecular beam epitaxy on Si substrates can act as Fabry-Perot (FP) microcavities. This conclusion is based on results of microphotoluminescence (µ-PL) measurements performed on individual NWs, which reveal periodic undulations of the PL intensity that follow an expected pattern of FP cavity modes. The cavity is concluded to be formed along the NW axis with the end facets acting as reflecting mirrors. The formation of the FP modes is shown to be facilitated by an increasing index contrast with the surrounding media. Spectral dependence of the group refractive index is also determined for the studied NWs. The observation of the FP microcavity modes in the GaP/GaNP core/shell NWs can be considered as a first step toward achieving lasing in this quasidirect bandgap semiconductor in the NW geometry.
RESUMEN
Polymers are lightweight, flexible, solution-processable materials that are promising for low-cost printed electronics as well as for mass-produced and large-area applications. Previous studies demonstrated that they can possess insulating, semiconducting or metallic properties; here we report that polymers can also be semi-metallic. Semi-metals, exemplified by bismuth, graphite and telluride alloys, have no energy bandgap and a very low density of states at the Fermi level. Furthermore, they typically have a higher Seebeck coefficient and lower thermal conductivities compared with metals, thus being suitable for thermoelectric applications. We measure the thermoelectric properties of various poly(3,4-ethylenedioxythiophene) samples, and observe a marked increase in the Seebeck coefficient when the electrical conductivity is enhanced through molecular organization. This initiates the transition from a Fermi glass to a semi-metal. The high Seebeck value, the metallic conductivity at room temperature and the absence of unpaired electron spins makes polymer semi-metals attractive for thermoelectrics and spintronics.
RESUMEN
The III-V semiconductor nanowires (NWs) have a great potential for applications in a variety of future electronic and photonic devices with enhanced functionality. In this work, we employ polarization-resolved microphotoluminescence (µ-PL) spectroscopy to study polarization properties of light emissions from individual GaNP and GaP/GaNP core/shell NWs with average diameters ranging between 100 and 350 nm. We show that the near-band-edge emission, which originates from the GaNP regions of the NWs, is strongly polarized (up to 60% at 150 K) in the direction perpendicular to the NW axis. The polarization anisotropy can be retained up to room temperature. This polarization behavior, which is unusual for zinc blende NWs, is attributed to local strain in the vicinity of the N-related centers participating in the radiative recombination and to preferential alignment of their principal axis along the growth direction. Our findings therefore show that defect engineering via alloying with nitrogen provides an additional degree of freedom to tailor the polarization anisotropy of III-V nanowires, which is advantageous for their applications as nanoscale emitters of polarized light.
RESUMEN
Semiconductor nanowires (NWs) have recently gained increasing interest due to their great potential for photovoltaics. A novel material system based on GaNP NWs is considered to be highly suitable for applications in efficient multi-junction and intermediate band solar cells. This work shows that though the bandgap energies of GaN(x)P(1-x) alloys lie within the visible spectral range (i.e., within 540-650 nm for the currently achievable x < 3%), coaxial GaNP NWs grown on Si substrates can also harvest infrared light utilizing energy upconversion. This energy upconversion can be monitored via anti-Stokes near-band-edge photoluminescence (PL) from GaNP, visible even from a single NW. The dominant process responsible for this effect is identified as being due to two-step two-photon absorption (TS-TPA) via a deep level lying at about 1.28 eV above the valence band, based on the measured dependences of the anti-Stokes PL on excitation power and wavelength. The formation of the defect participating in the TS-TPA process is concluded to be promoted by nitrogen incorporation. The revealed defect-mediated TS-TPA process can boost efficiency of harvesting solar energy in GaNP NWs, beneficial for applications of this novel material system in third-generation photovoltaic devices.
RESUMEN
Reversible optical property changes in lead-free perovskites have recently received great interest due to their potential applications in smart windows, sensors, data encryption, and various on-demand devices. However, it is challenging to achieve remarkable color changes in their thin films. Here, methylamine gas (CH3 NH2 , MA0 ) induced switchable optical bleaching of bismuth (Bi)-based perovskite films is demonstrated for the first time. By exposure to an MA0 atmosphere, the color of Cs2 AgBiBr6 (CABB) films changes from yellow to transparent, and the color of Cs3 Bi2 I9 (CBI) films changes from dark red to transparent. More interestingly, the underlying reason is found to be the interactions between MA0 and Bi3+ with the formation of an amorphous liquefied transparent intermediate phase, which is different from that of lead-based perovskite systems. Moreover, the generality of this approach is demonstrated with other amine gases, including ethylamine (C2 H5 NH2 , EA0 ) and butylamine (CH3 (CH2 )3 NH2 , BA0 ), and another compound, Cs3 Sb2 I9 , by observing a similar reversible optical bleaching phenomenon. The potential for the application of CABB and CBI films in switchable smart windows is investigated. This study provides valuable insights into the interactions between amine gases and lead-free perovskites, opening up new possibilities for high-efficiency optoelectronic and stimuli-responsive applications of these emerging Bi-based materials.
RESUMEN
In this study, we report a significant enhancement in the performance of GaNAs-based single nanowire lasers through optimization of growth conditions, leading to a lower lasing threshold and higher operation temperatures. Our analysis reveals that these improvements in the laser performance can be attributed to a decrease in the density of localized states within the material. Furthermore, we demonstrate that owing to their excellent nonlinear optical properties, these nanowires support self-frequency conversion of the stimulated emission through second harmonic generation (SHG) and sum-frequency generation (SFG), providing coherent light emission in the cyan-green range. Mode-specific differences in the self-conversion efficiency are revealed and explained by differences in the light extraction efficiency of the converted light caused by the electric field distribution of the fundamental modes. Our work, therefore, facilitates the design and development of multiwavelength coherent light generation and higher-temperature operation of GaNAs nanowire lasers, which will be useful in the fields of optical communications, sensing, and nanophotonics.
RESUMEN
Solution-processable semiconductors with antiferromagnetic (AFM) order are attractive for future spintronics and information storage technology. Halide perovskites containing magnetic ions have emerged as multifunctional materials, demonstrating a cross-link between structural, optical, electrical, and magnetic properties. However, stable optoelectronic halide perovskites that are antiferromagnetic remain sparse, and the critical design rules to optimize magnetic coupling still must be developed. Here, we combine the complementary magnetometry and electron-spin-resonance experiments, together with first-principles calculations to study the antiferromagnetic coupling in stable Cs2(Ag:Na)FeCl6 bulk semiconductor alloys grown by the hydrothermal method. We show the importance of nonmagnetic monovalence ions at the BI site (Na/Ag) in facilitating the superexchange interaction via orbital hybridization, offering the tunability of the Curie-Weiss parameters between -27 and -210 K, with a potential to promote magnetic frustration via alloying the nonmagnetic BI site (Ag:Na ratio). Combining our experimental evidence with first-principles calculations, we draw a cohesive picture of the material design for B-site-ordered antiferromagnetic halide double perovskites.
RESUMEN
Phonon-phonon and electron/exciton-phonon coupling play a vitally important role in thermal, electronic, as well as optical properties of metal halide perovskites. In this work, we evaluate phonon anharmonicity and coupling between electronic and vibrational excitations in novel double perovskite Cs2NaFeCl6 single crystals. By employing comprehensive Raman measurements combined with first-principles theoretical calculations, we identify four Raman-active vibrational modes. Polarization properties of these modes imply Fm3Ì m symmetry of the lattice, indicative for on average an ordered distribution of Fe and Na atoms in the lattice. We further show that temperature dependence of the Raman modes, such as changes in the phonon line width and their energies, suggests high phonon anharmonicity, typical for double perovskite materials. Resonant multiphonon Raman scattering reveals the presence of high-lying band states that mediate strong electron-phonon coupling and give rise to intense nA 1g overtones up to the fifth order. Strong electron-phonon coupling in Cs2NaFeCl6 is also concluded based on the Urbach tail analysis of the absorption coefficient and the calculated Fröhlich coupling constant. Our results, therefore, suggest significant impacts of phonon-phonon and electron-phonon interactions on electronic properties of Cs2NaFeCl6, important for potential applications of this novel material.
RESUMEN
Water-based conductive inks are vital for the sustainable manufacturing and widespread adoption of organic electronic devices. Traditional methods to produce waterborne conductive polymers involve modifying their backbone with hydrophilic side chains or using surfactants to form and stabilize aqueous nanoparticle dispersions. However, these chemical approaches are not always feasible and can lead to poor material/device performance. Here, we demonstrate that ground-state electron transfer (GSET) between donor and acceptor polymers allows the processing of water-insoluble polymers from water. This approach enables macromolecular charge-transfer salts with 10,000× higher electrical conductivities than pristine polymers, low work function, and excellent thermal/solvent stability. These waterborne conductive films have technological implications for realizing high-performance organic solar cells, with efficiency and stability superior to conventional metal oxide electron transport layers, and organic electrochemical neurons with biorealistic firing frequency. Our findings demonstrate that GSET offers a promising avenue to develop water-based conductive inks for various applications in organic electronics.