Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Front Bioeng Biotechnol ; 10: 909187, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35573243

RESUMEN

Electrocatalytic glucose oxidation is crucial to the development of non-enzymatic sensors, an attractive alternative for enzymatic biosensors. However, due to OH- consumption during the catalytic process, non-enzymatic detection generally requires electrolytes having an alkaline pH value, limiting its practical application since biofluids are neutral. Herein, via interfacial microenvironment design, we addressed this limitation by developing a non-enzymatic sensor with an air-solid-liquid triphase interface electrodes that synergistically integrates the functions of local alkalinity generation and electrocatalytic glucose oxidation. A sufficiently high local pH value was achieved via oxygen reduction reaction at the triphase interface, which consequently enabled the electrochemical oxidation (detection) of glucose in neutral solution. Moreover, we found that the linear detection range and sensitivity of triphase non-enzymatic sensor can be tuned by changing the electrocatalysts of the detection electrode. The triphase electrode architecture provides a new platform for further exploration and promotes practical application of non-enzymatic sensors.

2.
Biosens Bioelectron ; 183: 113201, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33812291

RESUMEN

Flexible bioassays based on oxidase-catalyzed and electrocatalytic cascade reactions have been widely reported. However, the fluctuant oxygen level and high anodic potential restricts the detection accuracy. To overcome these challenges, we report here a flexible triphase enzyme electrode by assembling an oxidase enzyme layer and Pt electrocatalysts onto a carbon nanotube film/porous polyvinylidene fluoride hydrophobic substrate. Such a flexible enzyme electrode has an air-liquid-solid triphase reaction zone where oxygen level is air phase dependent (constant and sufficient high), which stabilized the oxidase kinetics and enabled the cathodic measurement of enzymatic product H2O2 with minimum interferents caused from oxygen level fluctuation and many oxidizable species in analyte solution. Furthermore, the flexible triphase enzyme electrode exhibited good mechanical stability even after being bent over 600 times and an excellent air permeability, which are crucial to wearable devices that require long-term skin contact.


Asunto(s)
Técnicas Biosensibles , Bioensayo , Glucosa , Glucosa Oxidasa , Peróxido de Hidrógeno , Polivinilos , Porosidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA