Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Circ Res ; 134(3): 290-306, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38197258

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is the most prevalent monogenic heart disorder. However, the pathogenesis of HCM, especially its nongenetic mechanisms, remains largely unclear. Transcription factors are known to be involved in various biological processes including cell growth. We hypothesized that SP1 (specificity protein 1), the first purified TF in mammals, plays a role in the cardiomyocyte growth and cardiac hypertrophy of HCM. METHODS: Cardiac-specific conditional knockout of Sp1 mice were constructed to investigate the role of SP1 in the heart. The echocardiography, histochemical experiment, and transmission electron microscope were performed to analyze the cardiac phenotypes of cardiac-specific conditional knockout of Sp1 mice. RNA sequencing, chromatin immunoprecipitation sequencing, and adeno-associated virus experiments in vivo were performed to explore the downstream molecules of SP1. To examine the therapeutic effect of SP1 on HCM, an SP1 overexpression vector was constructed and injected into the mutant allele of Myh6 R404Q/+ (Myh6 c. 1211C>T) HCM mice. The human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) from a patient with HCM were used to detect the potential therapeutic effects of SP1 in human HCM. RESULTS: The cardiac-specific conditional knockout of Sp1 mice developed a typical HCM phenotype, displaying overt myocardial hypertrophy, interstitial fibrosis, and disordered myofilament. In addition, Sp1 knockdown dramatically increased the cell area of hiPSC-CMs and caused intracellular myofibrillar disorganization, which was similar to the hypertrophic cardiomyocytes of HCM. Mechanistically, Tuft1 was identified as the key target gene of SP1. The hypertrophic phenotypes induced by Sp1 knockdown in both hiPSC-CMs and mice could be rescued by TUFT1 (tuftelin 1) overexpression. Furthermore, SP1 overexpression suppressed the development of HCM in the mutant allele of Myh6 R404Q/+ mice and also reversed the hypertrophic phenotype of HCM hiPSC-CMs. CONCLUSIONS: Our study demonstrates that SP1 deficiency leads to HCM. SP1 overexpression exhibits significant therapeutic effects on both HCM mice and HCM hiPSC-CMs, suggesting that SP1 could be a potential intervention target for HCM.


Asunto(s)
Cardiomiopatía Hipertrófica , Células Madre Pluripotentes Inducidas , Humanos , Ratones , Animales , Células Madre Pluripotentes Inducidas/metabolismo , Cardiomiopatía Hipertrófica/metabolismo , Miofibrillas/metabolismo , Miocitos Cardíacos/metabolismo , Cardiomegalia/metabolismo , Factores de Transcripción/metabolismo , Mamíferos
2.
Inorg Chem ; 63(1): 870-880, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38117690

RESUMEN

Solar-powered photocatalytic conversion of CO2 to hydrocarbon fuels represents an emerging approach to solving the greenhouse effect. However, low charge separation efficiency, deficiency of surface catalytic active sites, and sluggish charge-transfer kinetics, together with the complicated reaction pathway, concurrently hinder the CO2 reduction. Herein, we show the rational construction of transition metal chalcogenides (TMCs) heterostructure CO2 reduction photosystems, wherein the TMC substrate is tightly integrated with amorphous oxygen-containing cobalt sulfide (CoSOH) by a solid non-conjugated polymer, i.e., poly(vinyl alcohol) (PVA), to customize the unidirectional charge-transfer pathway. In this well-defined multilayered nanoarchitecture, the PVA interim layer intercalated between TMCs and CoSOH acts as a hole-relaying mediator and meanwhile boosts CO2 adsorption capacity, while CoSOH functions as a terminal hole-collecting reservoir, stimulating the charge transport kinetics and boosting the charge separation over TMCs. This peculiar interface configuration and charge transport characteristics endow TMC/PVA/CoSOH heterostructures with significantly enhanced visible-light-driven photoactivity and CO2 conversion. Based on the intermediates probed during the photocatalytic CO2 reduction reaction, the photocatalytic mechanism was determined. Our work would inspire sparkling ideas to mediate the charge transfer over semiconductor for solar carbon neutral conversion.

3.
J Nanobiotechnology ; 22(1): 132, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38532378

RESUMEN

BACKGROUND: Cardiovascular diseases (CVDs) have the highest mortality worldwide. Human pluripotent stem cells (hPSCs) and their cardiomyocyte derivatives (hPSC-CMs) offer a valuable resource for disease modeling, pharmacological screening, and regenerative therapy. While most CVDs are linked to significant over-production of reactive oxygen species (ROS), the effects of current antioxidants targeting excessive ROS are limited. Nanotechnology is a powerful tool to develop antioxidants with improved selectivity, solubility, and bioavailability to prevent or treat various diseases related to oxidative stress. Cerium oxide nanozymes (CeONZs) can effectively scavenge excessive ROS by mimicking the activity of endogenous antioxidant enzymes. This study aimed to assess the nanotoxicity of CeONZs and their potential antioxidant benefits in stressed human embryonic stem cells (hESCs) and their derived cardiomyocytes (hESC-CMs). RESULTS: CeONZs demonstrated reliable nanosafety and biocompatibility in hESCs and hESC-CMs within a broad range of concentrations. CeONZs exhibited protective effects on the cell viability of hESCs and hESC-CMs by alleviating excessive ROS-induced oxidative stress. Moreover, CeONZs protected hESC-CMs from doxorubicin (DOX)-induced cardiotoxicity and partially ameliorated the insults from DOX in neonatal rat cardiomyocytes (NRCMs). Furthermore, during hESCs culture, CeONZs were found to reduce ROS, decrease apoptosis, and enhance cell survival without affecting their self-renewal and differentiation potential. CONCLUSIONS: CeONZs displayed good safety and biocompatibility, as well as enhanced the cell viability of hESCs and hESC-CMs by shielding them from oxidative damage. These promising results suggest that CeONZs may be crucial, as a safe nanoantioxidant, to potentially improve the therapeutic efficacy of CVDs and be incorporated into regenerative medicine.


Asunto(s)
Cerio , Miocitos Cardíacos , Células Madre Pluripotentes , Humanos , Ratas , Animales , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Diferenciación Celular , Antioxidantes/farmacología , Doxorrubicina/farmacología
4.
Mar Pollut Bull ; 201: 116188, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38402697

RESUMEN

In this study, the ecological risk assessment of PAHs pollution, the existing S-T model was improved and applied to this PAHs pollution assessment in surface sediment in Lake Chaohu. The potential sources and contributions of PAHs in the surface sediment were estimated by molecular diagnostic ratio (MDR) and positive matrix factorization (PMF). The results showed that the average concentration of 16 priority PAHs in the surface sediment was 718.16 ng/g in 2009 and 334.67 ng/g in 2020. In 2020, PAHs concentration has decreased compared to 2009 and the dominant composition has changed from high- to low-molecular-weight PAHs. The estimated PAHs mass inventory of the top 2 cm surface sediment was 2712 tons in 2009 and 1263 tons in 2020. Ecosystem risk assessment by improved S-T models suggested that the overall ecosystem risk of the studied regions was acceptable.


Asunto(s)
Hidrocarburos Policíclicos Aromáticos , Contaminantes Químicos del Agua , Hidrocarburos Policíclicos Aromáticos/análisis , Ecosistema , Monitoreo del Ambiente , Lagos/análisis , Sedimentos Geológicos , Contaminantes Químicos del Agua/análisis , Medición de Riesgo , China
5.
Cell Res ; 34(8): 556-571, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38849501

RESUMEN

Physiologically, the atria contract first, followed by the ventricles, which is the prerequisite for normal blood circulation. The above phenomenon of atrioventricular sequential contraction results from the characteristically slow conduction of electrical excitation of the atrioventricular node (AVN) between the atria and the ventricles. However, it is not clear what controls the conduction of electrical excitation within AVNs. Here, we find that AVN pacemaker cells (AVNPCs) possess an intact intrinsic GABAergic system, which plays a key role in electrical conduction from the atria to the ventricles. First, along with the discovery of abundant GABA-containing vesicles under the surface membranes of AVNPCs, key elements of the GABAergic system, including GABA metabolic enzymes, GABA receptors, and GABA transporters, were identified in AVNPCs. Second, GABA synchronously elicited GABA-gated currents in AVNPCs, which significantly weakened the excitability of AVNPCs. Third, the key molecular elements of the GABAergic system markedly modulated the conductivity of electrical excitation in the AVN. Fourth, GABAA receptor deficiency in AVNPCs accelerated atrioventricular conduction, which impaired the AVN's protective potential against rapid ventricular frequency responses, increased susceptibility to lethal ventricular arrhythmias, and decreased the cardiac contractile function. Finally, interventions targeting the GABAergic system effectively prevented the occurrence and development of atrioventricular block. In summary, the endogenous GABAergic system in AVNPCs determines the slow conduction of electrical excitation within AVNs, thereby ensuring sequential atrioventricular contraction. The endogenous GABAergic system shows promise as a novel intervention target for cardiac arrhythmias.


Asunto(s)
Nodo Atrioventricular , Atrios Cardíacos , Ventrículos Cardíacos , Receptores de GABA-A , Ácido gamma-Aminobutírico , Animales , Ácido gamma-Aminobutírico/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/citología , Atrios Cardíacos/metabolismo , Atrios Cardíacos/citología , Nodo Atrioventricular/metabolismo , Nodo Atrioventricular/fisiología , Ratones , Receptores de GABA-A/metabolismo , Ratones Endogámicos C57BL , Masculino , Potenciales de Acción , Arritmias Cardíacas/metabolismo
6.
Stem Cell Res Ther ; 15(1): 31, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38317221

RESUMEN

BACKGROUND: Transcription factors HAND1 and HAND2 (HAND1/2) play significant roles in cardiac organogenesis. Abnormal expression and deficiency of HAND1/2 result in severe cardiac defects. However, the function and mechanism of HAND1/2 in regulating human early cardiac lineage commitment and differentiation are still unclear. METHODS: With NKX2.5eGFP H9 human embryonic stem cells (hESCs), we established single and double knockout cell lines for HAND1 and HAND2, respectively, whose cardiomyocyte differentiation efficiency could be monitored by assessing NKX2.5-eGFP+ cells with flow cytometry. The expression of specific markers for heart fields and cardiomyocyte subtypes was examined by quantitative PCR, western blot and immunofluorescence staining. Microelectrode array and whole-cell patch clamp were performed to determine the electrophysiological characteristics of differentiated cardiomyocytes. The transcriptomic changes of HAND knockout cells were revealed by RNA sequencing. The HAND1/2 target genes were identified and validated experimentally by integrating with HAND1/2 chromatin immunoprecipitation sequencing data. RESULTS: Either HAND1 or HAND2 knockout did not affect the cardiomyocyte differentiation kinetics, whereas depletion of HAND1/2 resulted in delayed differentiation onset. HAND1 knockout biased cardiac mesoderm toward second heart field progenitors at the expense of first heart field progenitors, leading to increased expression of atrial and outflow tract cardiomyocyte markers, which was further confirmed by the appearance of atrial-like action potentials. By contrast, HAND2 knockout cardiomyocytes had reduced expression of atrial cardiomyocyte markers and displayed ventricular-like action potentials. HAND1/2-deficient hESCs were more inclined to second heart field lineage and its derived cardiomyocytes with atrial-like action potentials than HAND1 single knockout during differentiation. Further mechanistic investigations suggested TBX5 as one of the downstream targets of HAND1/2, whose overexpression partially restored the abnormal cardiomyocyte differentiation in HAND1/2-deficient hESCs. CONCLUSIONS: HAND1/2 have specific and redundant roles in cardiac lineage commitment and differentiation. These findings not only reveal the essential function of HAND1/2 in cardiac organogenesis, but also provide important information on the pathogenesis of HAND1/2 deficiency-related congenital heart diseases, which could potentially lead to new therapeutic strategies.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Células Madre Embrionarias Humanas , Humanos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Diferenciación Celular/genética , Miocitos Cardíacos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Células Madre Embrionarias Humanas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA