Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ecotoxicol Environ Saf ; 271: 115962, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38237394

RESUMEN

High-precision mapping based on portable X-ray fluorescence (PXRF) data is currently being studied extensively; however, owing to poor correlation with soil metal concentration, the original PXRF data directly used for co-kriging interpolation (CKI) cannot accurately map contaminated sites with heterogeneous concentrations. Therefore, this study selected a landfill-contaminated site for research, explored the best correlation mode between PXRF variants and actual heavy metal concentration, analyzed the impact of improving the correlation model on the CKI of the spatial distribution of heavy metals, and explored the most appropriate CKI mode and point density. The results showed the following: (1) After nonlinear transformation, the correlation model between PXRF and the actual concentration was significantly improved, and the correlation coefficients of five heavy metals increased from 0.214-0.232 to 0.936-0.986. (2) The introduction of corrected PXRF data significantly improves the accuracy of CKI. Compared with the original PXRF co-kriging interpolation (OP-CKI), the ME of the corrected PXRF co-kriging interpolation (CP-CKI) for Zn, Pb, and Cu decreased by 78.2 %, 45.5 %, and 65.3 %, respectively. In terms of the spatial distribution of heavy metal pollutant concentrations, CP-CKI effectively improved the influence of local anomalous high-value points on the interpolation accuracy. (3) When the sample density measured by inductively coupled plasma mass spectrometry (ICP-MS) was less than 4 boreholes/hm2, CKI accuracy decreased significantly, indicating that the sample density should not be less than a certain threshold during CKI. (4) When the sample density measured by PXRF exceeded 7 boreholes/hm2, the mean error and root mean square error of CKI continued to decrease, suggesting that the introduction of enough sample density measured by PXRF can effectively improve the accuracy of CKI.


Asunto(s)
Metales Pesados , Contaminantes del Suelo , Rayos X , Espectrometría por Rayos X/métodos , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Análisis Espacial , Suelo/química
2.
Sci Rep ; 11(1): 5843, 2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712638

RESUMEN

Rapid, accurate detection of heavy-metal content is extremely important for precise risk control and targeted remediation. Herein, a general modeling method and process based on the relationship between Pxrf measured values and site parameters are explored to construct a Pxrf correction model suitable to improve each site's measurement accuracy. Results show a significant correlation between Pb, Mn, and Zn Pxrf measured values and actual concentrations, with correlation coefficients between 0.8 and 0.93. Through the correlation analysis, the correlation coefficient between the water content and the measured value of pxrf is in the range of 0.2-0.5. Pxrf measurement of all heavy metals was weakly affected by soil organic matter content, with correlation coefficients all lower than 0.5. Model transformation effectively improved the correlation between measured Pxrf value and actual concentration, and transformation increased the correlations of Sr, Mn, and Cu by around 0.11. Model verification results showed that the Pb, Zn, Fe, and Mn models can be used to improve Pxrf method detection accuracy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA