Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.176
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 24(6): 1036-1048, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37106040

RESUMEN

Allergic diseases are a major global health issue. Interleukin (IL)-9-producing helper T (TH9) cells promote allergic inflammation, yet TH9 cell effector functions are incompletely understood because their lineage instability makes them challenging to study. Here we found that resting TH9 cells produced IL-9 independently of T cell receptor (TCR) restimulation, due to STAT5- and STAT6-dependent bystander activation. This mechanism was seen in circulating cells from allergic patients and was restricted to recently activated cells. STAT5-dependent Il9/IL9 regulatory elements underwent remodeling over time, inactivating the locus. A broader 'allergic TH9' transcriptomic and epigenomic program was also unstable. In vivo, TH9 cells induced airway inflammation via TCR-independent, STAT-dependent mechanisms. In allergic patients, TH9 cell expansion was associated with responsiveness to JAK inhibitors. These findings suggest that TH9 cell instability is a negative checkpoint on bystander activation that breaks down in allergy and that JAK inhibitors should be considered for allergic patients with TH9 cell expansion.


Asunto(s)
Hipersensibilidad , Inhibidores de las Cinasas Janus , Humanos , Interleucina-9/genética , Linfocitos T Colaboradores-Inductores , Factor de Transcripción STAT5/genética , Cromatina/genética , Inflamación , Hipersensibilidad/genética , Diferenciación Celular , Factor de Transcripción STAT6
2.
Nat Immunol ; 22(3): 370-380, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33574619

RESUMEN

During chronic infection and cancer, a self-renewing CD8+ T cell subset maintains long-term immunity and is critical to the effectiveness of immunotherapy. These stem-like CD8+ T cells diverge from other CD8+ subsets early after chronic viral infection. However, pathways guarding stem-like CD8+ T cells against terminal exhaustion remain unclear. Here, we show that the gene encoding transcriptional repressor BACH2 is transcriptionally and epigenetically active in stem-like CD8+ T cells but not terminally exhausted cells early after infection. BACH2 overexpression enforced stem-like cell fate, whereas BACH2 deficiency impaired stem-like CD8+ T cell differentiation. Single-cell transcriptomic and epigenomic approaches revealed that BACH2 established the transcriptional and epigenetic programs of stem-like CD8+ T cells. In addition, BACH2 suppressed the molecular program driving terminal exhaustion through transcriptional repression and epigenetic silencing. Thus, our study reveals a new pathway that enforces commitment to stem-like CD8+ lineage and prevents an alternative terminally exhausted cell fate.


Asunto(s)
Infecciones por Arenaviridae/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Linfocitos T CD8-positivos/metabolismo , Diferenciación Celular , Epigénesis Genética , Células Precursoras de Linfocitos T/metabolismo , Transcripción Genética , Animales , Infecciones por Arenaviridae/genética , Infecciones por Arenaviridae/inmunología , Infecciones por Arenaviridae/virología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/deficiencia , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/virología , Linaje de la Célula , Células Cultivadas , Enfermedad Crónica , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Virus de la Coriomeningitis Linfocítica/inmunología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Células Precursoras de Linfocitos T/inmunología , Células Precursoras de Linfocitos T/virología , Transducción de Señal
3.
Mol Cell ; 84(10): 1964-1979.e6, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38759628

RESUMEN

The role of the mitochondrial electron transport chain (ETC) in regulating ferroptosis is not fully elucidated. Here, we reveal that pharmacological inhibition of the ETC complex I reduces ubiquinol levels while decreasing ATP levels and activating AMP-activated protein kinase (AMPK), the two effects known for their roles in promoting and suppressing ferroptosis, respectively. Consequently, the impact of complex I inhibitors on ferroptosis induced by glutathione peroxidase 4 (GPX4) inhibition is limited. The pharmacological inhibition of complex I in LKB1-AMPK-inactivated cells, or genetic ablation of complex I (which does not trigger apparent AMPK activation), abrogates the AMPK-mediated ferroptosis-suppressive effect and sensitizes cancer cells to GPX4-inactivation-induced ferroptosis. Furthermore, complex I inhibition synergizes with radiotherapy (RT) to selectively suppress the growth of LKB1-deficient tumors by inducing ferroptosis in mouse models. Our data demonstrate a multifaceted role of complex I in regulating ferroptosis and propose a ferroptosis-inducing therapeutic strategy for LKB1-deficient cancers.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Complejo I de Transporte de Electrón , Ferroptosis , Animales , Femenino , Humanos , Ratones , Quinasas de la Proteína-Quinasa Activada por el AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Línea Celular Tumoral , Complejo I de Transporte de Electrón/metabolismo , Complejo I de Transporte de Electrón/genética , Ferroptosis/genética , Ferroptosis/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/genética , Mitocondrias/efectos de los fármacos , Neoplasias/genética , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/tratamiento farmacológico , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Nat Immunol ; 20(7): 890-901, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209400

RESUMEN

Progenitor-like CD8+ T cells mediate long-term immunity to chronic infection and cancer and respond potently to immune checkpoint blockade. These cells share transcriptional regulators with memory precursor cells, including T cell-specific transcription factor 1 (TCF1), but it is unclear whether they adopt distinct programs to adapt to the immunosuppressive environment. By comparing the single-cell transcriptomes and epigenetic profiles of CD8+ T cells responding to acute and chronic viral infections, we found that progenitor-like CD8+ T cells became distinct from memory precursor cells before the peak of the T cell response. We discovered a coexpression gene module containing Tox that exhibited higher transcriptional activity associated with more abundant active histone marks in progenitor-like cells than memory precursor cells. Moreover, thymocyte selection-associated high mobility group box protein TOX (TOX) promoted the persistence of antiviral CD8+ T cells and was required for the programming of progenitor-like CD8+ T cells. Thus, long-term CD8+ T cell immunity to chronic viral infection requires unique transcriptional and epigenetic programs associated with the transcription factor TOX.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Infecciones/etiología , Análisis de la Célula Individual , Animales , Biomarcadores , Inmunoprecipitación de Cromatina , Epigénesis Genética , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Proteínas de Homeodominio/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Memoria Inmunológica , Infecciones/metabolismo , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Factores de Tiempo , Transcriptoma
6.
Nat Immunol ; 19(9): 986-1000, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30127432

RESUMEN

Gain-of-function mutations in the gene encoding the phosphatidylinositol-3-OH kinase catalytic subunit p110δ (PI3Kδ) result in a human primary immunodeficiency characterized by lymphoproliferation, respiratory infections and inefficient responses to vaccines. However, what promotes these immunological disturbances at the cellular and molecular level remains unknown. We generated a mouse model that recapitulated major features of this disease and used this model and patient samples to probe how hyperactive PI3Kδ fosters aberrant humoral immunity. We found that mutant PI3Kδ led to co-stimulatory receptor ICOS-independent increases in the abundance of follicular helper T cells (TFH cells) and germinal-center (GC) B cells, disorganized GCs and poor class-switched antigen-specific responses to immunization, associated with altered regulation of the transcription factor FOXO1 and pro-apoptotic and anti-apoptotic members of the BCL-2 family. Notably, aberrant responses were accompanied by increased reactivity to gut bacteria and a broad increase in autoantibodies that were dependent on stimulation by commensal microbes. Our findings suggest that proper regulation of PI3Kδ is critical for ensuring optimal host-protective humoral immunity despite tonic stimulation from the commensal microbiome.


Asunto(s)
Linfocitos B/fisiología , Microbioma Gastrointestinal/inmunología , Centro Germinal/fisiología , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Linfocitos T Colaboradores-Inductores/fisiología , Animales , Autoanticuerpos/sangre , Células Cultivadas , Fosfatidilinositol 3-Quinasa Clase I/genética , Modelos Animales de Enfermedad , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Inmunidad Humoral/genética , Cambio de Clase de Inmunoglobulina/genética , Síndromes de Inmunodeficiencia/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
7.
Nature ; 621(7977): 75-81, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37673990

RESUMEN

Benefiting from high energy density (2,600 Wh kg-1) and low cost, lithium-sulfur (Li-S) batteries are considered promising candidates for advanced energy-storage systems1-4. Despite tremendous efforts in suppressing the long-standing shuttle effect of lithium polysulfides5-7, understanding of the interfacial reactions of lithium polysulfides at the nanoscale remains elusive. This is mainly because of the limitations of in situ characterization tools in tracing the liquid-solid conversion of unstable lithium polysulfides at high temporal-spatial resolution8-10. There is an urgent need to understand the coupled phenomena inside Li-S batteries, specifically, the dynamic distribution, aggregation, deposition and dissolution of lithium polysulfides. Here, by using in situ liquid-cell electrochemical transmission electron microscopy, we directly visualized the transformation of lithium polysulfides over electrode surfaces at the atomic scale. Notably, an unexpected gathering-induced collective charge transfer of lithium polysulfides was captured on the nanocluster active-centre-immobilized surface. It further induced an instantaneous deposition of nonequilibrium Li2S nanocrystals from the dense liquid phase of lithium polysulfides. Without mediation of active centres, the reactions followed a classical single-molecule pathway, lithium polysulfides transforming into Li2S2 and Li2S step by step. Molecular dynamics simulations indicated that the long-range electrostatic interaction between active centres and lithium polysulfides promoted the formation of a dense phase consisting of Li+ and Sn2- (2 < n ≤ 6), and the collective charge transfer in the dense phase was further verified by ab initio molecular dynamics simulations. The collective interfacial reaction pathway unveils a new transformation mechanism and deepens the fundamental understanding of Li-S batteries.

9.
Mol Cell ; 79(2): 268-279.e5, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32592682

RESUMEN

Circular RNAs (circRNAs) are abundant and accumulate with age in neurons of diverse species. However, only few circRNAs have been functionally characterized, and their role during aging has not been addressed. Here, we use transcriptome profiling during aging and find that accumulation of circRNAs is slowed down in long-lived insulin mutant flies. Next, we characterize the in vivo function of a circRNA generated by the sulfateless gene (circSfl), which is consistently upregulated, particularly in the brain and muscle, of diverse long-lived insulin mutants. Strikingly, lifespan extension of insulin mutants is dependent on circSfl, and overexpression of circSfl alone is sufficient to extend the lifespan. Moreover, circSfl is translated into a protein that shares the N terminus and potentially some functions with the full-length Sfl protein encoded by the host gene. Our study demonstrates that insulin signaling affects global circRNA accumulation and reveals an important role of circSfl during aging in vivo.


Asunto(s)
Drosophila/fisiología , Insulina/fisiología , Longevidad/genética , ARN Circular/fisiología , Envejecimiento , Animales , Animales Modificados Genéticamente , Drosophila/genética , Proteínas de Drosophila/genética , Femenino , Masculino , Mutación , Neuronas/fisiología , Sulfotransferasas/genética , Transcriptoma
10.
EMBO Rep ; 25(2): 616-645, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38243138

RESUMEN

Vascular remodeling is the process of structural alteration and cell rearrangement of blood vessels in response to injury and is the cause of many of the world's most afflicted cardiovascular conditions, including pulmonary arterial hypertension (PAH). Many studies have focused on the effects of vascular endothelial cells and smooth muscle cells (SMCs) during vascular remodeling, but pericytes, an indispensable cell population residing largely in capillaries, are ignored in this maladaptive process. Here, we report that hypoxia-inducible factor 2α (HIF2α) expression is increased in the lung tissues of PAH patients, and HIF2α overexpressed pericytes result in greater contractility and an impaired endothelial-pericyte interaction. Using single-cell RNAseq and hypoxia-induced pulmonary hypertension (PH) models, we show that HIF2α is a major molecular regulator for the transformation of pericytes into SMC-like cells. Pericyte-selective HIF2α overexpression in mice exacerbates PH and right ventricular hypertrophy. Temporal cellular lineage tracing shows that HIF2α overexpressing reporter NG2+ cells (pericyte-selective) relocate from capillaries to arterioles and co-express SMA. This novel insight into the crucial role of NG2+ pericytes in pulmonary vascular remodeling via HIF2α signaling suggests a potential drug target for PH.


Asunto(s)
Hipertensión Pulmonar , Remodelación Vascular , Ratones , Humanos , Animales , Pericitos/metabolismo , Células Endoteliales/metabolismo , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Pulmón
11.
Chem Rev ; 124(14): 8620-8656, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38990563

RESUMEN

Heterogeneous electrocatalysis lies at the center of various technologies that could help enable a sustainable future. However, its complexity makes it challenging to accurately and efficiently model at an atomic level. Here, we review emerging atomistic methods to simulate the electrocatalytic interface with special attention devoted to the components/effects that have been challenging to model, such as solvation, electrolyte ions, electrode potential, reaction kinetics, and pH. Additionally, we review relevant computational spectroscopy methods. Then, we showcase several examples of applying these methods to understand and design catalysts relevant to green hydrogen. We also offer experimental views on how to bridge the gap between theory and experiments. Finally, we provide some perspectives on opportunities to advance the field.

12.
Nature ; 586(7830): 549-554, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32906144

RESUMEN

Metal-organic frameworks (MOFs)1-3 are known for their specific interactions with gas molecules4,5; this, combined with their rich and ordered porosity, makes them promising candidates for the photocatalytic conversion of gas molecules to useful products6. However, attempts to use MOFs or MOF-based composites for CO2 photoreduction6-13 usually result in far lower CO2 conversion efficiency than that obtained from state-of-the-art solid-state or molecular catalysts14-18, even when facilitated by sacrificial reagents. Here we create 'molecular compartments' inside MOF crystals by growing TiO2 inside different pores of a chromium terephthalate-based MOF (MIL-101) and its derivatives. This allows for synergy between the light-absorbing/electron-generating TiO2 units and the catalytic metal clusters in the backbones of MOFs, and therefore facilitates photocatalytic CO2 reduction, concurrent with production of O2. An apparent quantum efficiency for CO2 photoreduction of 11.3 per cent at a wavelength of 350 nanometres is observed in a composite that consists of 42 per cent TiO2 in a MIL-101 derivative, namely, 42%-TiO2-in-MIL-101-Cr-NO2. TiO2 units in one type of compartment in this composite are estimated to be 44 times more active than those in the other type, underlining the role of precise positioning of TiO2 in this system.

13.
Nature ; 570(7762): E65, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31164722

RESUMEN

In Fig. 3e of this Letter, the labels "Br-Cl1" and "Br-Cl2" should read "Br-Br1" and "Br-Br2", respectively. In the Methods section 'Preparation of electrodes', the phrase "anhydrous LiBr/LiCl was replaced by LiBr·H2O (99.95%; Sigma-Aldrich) and LiCl (99.95%; Sigma-Aldrich)" should read "anhydrous LiBr/LiCl was replaced by LiBr·H2O (99.95%; Sigma-Aldrich) and LiCl·H2O (99.95%; Sigma-Aldrich)". These errors have been corrected online.

14.
Nature ; 569(7755): 245-250, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068723

RESUMEN

The use of 'water-in-salt' electrolytes has considerably expanded the electrochemical window of aqueous lithium-ion batteries to 3 to 4 volts, making it possible to couple high-voltage cathodes with low-potential graphite anodes1-4. However, the limited lithium intercalation capacities (less than 200 milliampere-hours per gram) of typical transition-metal-oxide cathodes5,6 preclude higher energy densities. Partial7,8 or exclusive9 anionic redox reactions may achieve higher capacity, but at the expense of reversibility. Here we report a halogen conversion-intercalation chemistry in graphite that produces composite electrodes with a capacity of 243 milliampere-hours per gram (for the total weight of the electrode) at an average potential of 4.2 volts versus Li/Li+. Experimental characterization and modelling attribute this high specific capacity to a densely packed stage-I graphite intercalation compound, C3.5[Br0.5Cl0.5], which can form reversibly in water-in-bisalt electrolyte. By coupling this cathode with a passivated graphite anode, we create a 4-volt-class aqueous Li-ion full cell with an energy density of 460 watt-hours per kilogram of total composite electrode and about 100 per cent Coulombic efficiency. This anion conversion-intercalation mechanism combines the high energy densities of the conversion reactions, the excellent reversibility of the intercalation mechanism and the improved safety of aqueous batteries.

15.
J Cell Physiol ; 239(3): e31068, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37357526

RESUMEN

N6-methyladenosine (m6 A) is one of the main epitranscriptomic modifications that accelerates the progression of malignant tumors by modifying RNA. Methyltransferase-like 16 (METTL16) is a newly identified methyltransferase that has been found to play an important oncogenic role in a few malignancies; however, its function in osteosarcoma (OS) remains unclear. In this study, METTL16 was found to be upregulated in OS tissues, and associated with poor prognosis in OS patients. Functionally, METTL16 substantially promoted OS cell proliferation, migration, and invasion in vitro and OS growth in vivo. Mechanistically, vacuolar protein sorting protein 33b (VPS33B) was identified as the downstream target of METTL16, which induced m6 A modification of VPS33B and impaired the stability of the VPS33B transcript, thereby degrading VPS33B. In addition, VPS33B was found to be downregulated in OS tissues, VPS33B knockdown markedly attenuated shMETTL16-mediated inhibition on OS progression. Finally, METTL16/VPS33B might facilitate OS progression through PI3K/AKT pathway. In summary, this study revealed an important role for the METTL16-mediated m6 A modification in OS progression, implying it as a promising target for OS treatment.


Asunto(s)
Adenosina , Neoplasias Óseas , Metiltransferasas , Osteosarcoma , Fosfatidilinositol 3-Quinasas , Proteínas de Transporte Vesicular , Humanos , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Metiltransferasas/genética , Metiltransferasas/metabolismo , Osteosarcoma/genética , Osteosarcoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Línea Celular Tumoral
16.
Plant Mol Biol ; 114(3): 46, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38630415

RESUMEN

Peach fruit rapidly soften after harvest, a significant challenge for producers and marketers as it results in rotting fruit and significantly reduces shelf life. In this study, we identified two tandem genes, PpNAC1 and PpNAC5, within the sr (slow ripening) locus. Phylogenetic analysis showed that NAC1 and NAC5 are highly conserved in dicots and that PpNAC1 is the orthologous gene of Non-ripening (NOR) in tomato. PpNAC1 and PpNAC5 were highly expressed in peach fruit, with their transcript levels up-regulated at the onset of ripening. Yeast two-hybrid and bimolecular fluorescence complementation assays showed PpNAC1 interacting with PpNAC5 and this interaction occurs with the tomato and apple orthologues. Transient gene silencing experiments showed that PpNAC1 and PpNAC5 positively regulate peach fruit softening. Yeast one-hybrid and dual luciferase assays and LUC bioluminescence imaging proved that PpNAC1 and PpNAC5 directly bind to the PpPGF promoter and activate its transcription. Co-expression of PpNAC1 and PpNAC5 showed higher levels of PpPGF activation than expression of PpNAC1 or PpNAC5 alone. In summary, our findings demonstrate that the tandem transcription factors PpNAC1 and PpNAC5 synergistically activate the transcription of PpPGF to regulate fruit softening during peach fruit ripening.


Asunto(s)
Prunus persica , Solanum lycopersicum , Prunus persica/genética , Frutas/genética , Filogenia , Saccharomyces cerevisiae , Solanum lycopersicum/genética , Factores de Transcripción/genética
17.
J Am Chem Soc ; 146(21): 14566-14575, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38659097

RESUMEN

Due to the increased concern about energy and environmental issues, significant attention has been paid to the development of large-scale energy storage devices to facilitate the utilization of clean energy sources. The redox flow battery (RFB) is one of the most promising systems. Recently, the high cost of transition-metal complex-based RFB has promoted the development of aqueous RFBs with redox-active organic molecules. To expand the working voltage, computational chemistry has been applied to search for organic molecules with lower or higher redox potentials. However, redox potential computation based on implicit solvation models would be challenging due to difficulty in parametrization when considering the complex solvation of supporting electrolytes. Besides, although ab initio molecular dynamics (AIMD) describes the supporting electrolytes with the same level of electronic structure theory as the redox couple, the application is impeded by the high computation costs. Recently, machine learning molecular dynamics (MLMD) has been illustrated to accelerate AIMD by several orders of magnitude without sacrificing the accuracy. It has been established that redox potentials can be computed by MLMD with two separated machine learning potentials (MLPs) for reactant and product states, which is redundant and inefficient. In this work, an automated workflow is developed to construct a universal MLP for both states, which can compute the redox potentials or acidity constants of redox-active organic molecules more efficiently. Furthermore, the predicted redox potentials can be evaluated at the hybrid functional level with much lower costs, which would facilitate the design of aqueous organic RFBs.

18.
J Am Chem Soc ; 146(34): 23989-23997, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39158716

RESUMEN

Structural degradation of oxide electrodes during the electrocatalytic oxygen evolution reaction (OER) is a major challenge in water electrolysis. Although the OER is known to induce changes in the surface layer, little is known about its effect on the bulk of the electrocatalyst and its overall phase stability. Here, we show that under OER conditions, a highly active SrCoO3-x electrocatalyst develops bulk lattice instability, which results in the formation of molecular O2 dimers inside the bulk and nanoscale amorphization induced via chemo-mechanical coupling. Using high-resolution resonant inelastic X-ray scattering and first-principles calculations, we unveil the potential-dependent evolution of lattice oxygen inside the perovskite and demonstrate that O2 dimers are stable in a densely packed crystal lattice, thus challenging the assumption that O2 dimers require sufficient interatomic spacing. We also show that the energy cost of local atomic rearrangements in SrCoO3-x becomes very low under the OER conditions, leading to an unusual amorphization under intercalation-induced stress. As a result, we propose that the amorphization energy can be calculated from the first principles and can be used to assess the stability of electrocatalysts. Our study demonstrates that extreme oxidation of electrocatalysts under OER can intrinsically destabilize the lattice and result in bulk anion redox and disorder, suggesting why some oxide materials are unstable and develop a thick amorphous layer under water electrolysis conditions.

19.
BMC Med ; 22(1): 385, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267013

RESUMEN

BACKGROUND: Sedentary behavior (SB) has emerged as a significant health concern that deserves attention. This study aimed to examine the associations between prolonged sedentary behavior and the risk of all-cause and cause-specific mortality as well as to explore desirable alternatives to sitting in terms of physical activity (PA). METHODS: Two prospective cohort investigations were conducted using the UK Biobank and NHANES datasets, with a total of 490,659 and 33,534 participants, respectively. Cox proportional hazards regression models were used to estimate the associations between SB and the risk of all-cause and cause-specific mortality due to cancer, cardiovascular disease (CVD), respiratory diseases, and digestive diseases. In addition, we employed isotemporal substitution models to examine the protective effect of replacing sitting with various forms of PA. RESULTS: During the average follow-up times of 13.5 and 6.7 years, 36,109 and 3057 deaths were documented in the UK Biobank and NHANES, respectively. Both cohorts demonstrated that, compared with individuals sitting less than 5 h per day, individuals with longer periods of sitting had higher risks of all-cause and cause-specific mortality due to cancer, CVD, and respiratory diseases but not digestive diseases. Moreover, replacing SB per day with PA, even substituting 30 min of walking for pleasure, reduced the risk of all-cause mortality by 3.5% (hazard ratio [HR] 0.965, 95% confidence interval [CI] 0.954-0.977), whereas cause-specific mortality from cancer, CVD, and respiratory diseases was reduced by 1.6% (HR 0.984, 95% CI 0.968-1.000), 4.4% (HR 0.956, 95% CI 0.930-0.982), and 15.5% (HR 0.845, 95% CI 0.795-0.899), respectively. Furthermore, the protective effects of substitution became more pronounced as the intensity of exercise increased or the alternative duration was extended to 1 h. CONCLUSIONS: SB was significantly correlated with substantially increased risks of all-cause mortality and cause-specific mortality from cancer, CVD, and respiratory diseases. However, substituting sitting with various forms of PA, even for short periods involving relatively light and relaxing physical activity, effectively reduced the risk of both overall and cause-specific mortality.


Asunto(s)
Enfermedades Cardiovasculares , Ejercicio Físico , Conducta Sedentaria , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios Prospectivos , Ejercicio Físico/fisiología , Adulto , Reino Unido/epidemiología , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/prevención & control , Anciano , Neoplasias/mortalidad , Enfermedades Respiratorias/mortalidad , Causas de Muerte , Modelos de Riesgos Proporcionales , Factores de Riesgo
20.
New Phytol ; 243(3): 1050-1064, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38872462

RESUMEN

Branch number is one of the most important agronomic traits of fruit trees such as peach. Little is known about how LncRNA and/or miRNA modules regulate branching through transcription factors. Here, we used molecular and genetic tools to clarify the molecular mechanisms underlying brassinosteroid (BR) altering plant branching. We found that the number of sylleptic branch and BR content in pillar peach ('Zhaoshouhong') was lower than those of standard type ('Okubo'), and exogenous BR application could significantly promote branching. PpTCP4 expressed great differentially comparing 'Zhaoshouhong' with 'Okubo'. PpTCP4 could directly bind to DWARF2 (PpD2) and inhibited its expression. PpD2 was the only one differentially expressed key gene in the path of BR biosynthesis. At the same time, PpTCP4 was identified as a target of miR6288b-3p. LncRNA1 could act as the endogenous target mimic of miR6288b-3p and repress expression of miR6288b-3p. Three deletions and five SNP sites of lncRNA1 promoter were found in 'Zhaoshouhong', which was an important cause of different mRNA level of PpTCP4 and BR content. Moreover, overexpressed PpTCP4 significantly inhibited branching. A novel mechanism in which the lncRNA1-miR6288b-3p-PpTCP4-PpD2 module regulates peach branching number was proposed.


Asunto(s)
Brasinoesteroides , Regulación de la Expresión Génica de las Plantas , MicroARNs , Proteínas de Plantas , Prunus persica , ARN Largo no Codificante , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Prunus persica/genética , Prunus persica/crecimiento & desarrollo , Prunus persica/metabolismo , Brasinoesteroides/metabolismo , Brasinoesteroides/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiones Promotoras Genéticas/genética , Secuencia de Bases , Polimorfismo de Nucleótido Simple/genética , Genes de Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA