Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(5): e2215575120, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36696445

RESUMEN

Chloroplast division involves the coordination of protein complexes from the stroma to the cytosol. The Min system of chloroplasts includes multiple stromal proteins that regulate the positioning of the division site. The outer envelope protein PLASTID DIVISION1 (PDV1) was previously reported to recruit the cytosolic chloroplast division protein ACCUMULATION AND REPLICATION OF CHLOROPLAST5 (ARC5). However, we show here that PDV1 is also important for the stability of the inner envelope chloroplast division protein PARALOG OF ARC6 (PARC6), a component of the Min system. We solved the structure of both the C-terminal domain of PARC6 and its complex with the C terminus of PDV1. The formation of an intramolecular disulfide bond within PARC6 under oxidized conditions prevents its interaction with PDV1. Interestingly, this disulfide bond can be reduced by light in planta, thus promoting PDV1-PARC6 interaction and chloroplast division. Interaction with PDV1 can induce the dimerization of PARC6, which is important for chloroplast division. Magnesium ions, whose concentration in chloroplasts increases upon light exposure, also promote the PARC6 dimerization. This study highlights the multilayer regulation of the PDV1-PARC6 interaction as well as chloroplast division.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Plastidios/metabolismo , Cloroplastos/metabolismo , Disulfuros/metabolismo , Dinaminas/metabolismo
2.
Plant Physiol ; 193(2): 1281-1296, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37394939

RESUMEN

Introns are noncoding sequences spliced out of pre-mRNAs by the spliceosome to produce mature mRNAs. The 5' ends of introns mostly begin with GU and have a conserved sequence motif of AG/GUAAGU that could base-pair with the core sequence of U1 snRNA of the spliceosome. Intriguingly, ∼ 1% of introns in various eukaryotic species begin with GC. This occurrence could cause misannotation of genes; however, the underlying splicing mechanism is unclear. We analyzed the sequences around the intron 5' splice site (ss) in Arabidopsis (Arabidopsis thaliana) and found sequences at the GC intron ss are much more stringent than those of GT introns. Mutational analysis at various positions of the intron 5' ss revealed that although mutations impair base pairing, different mutations at the same site can have different effects, suggesting that steric hindrance also affects splicing. Moreover, mutations of 5' ss often activate a hidden ss nearby. Our data suggest that the 5' ss is selected via a competition between the major ss and the nearby minor ss. This work not only provides insights into the splicing mechanism of intron 5' ss but also improves the accuracy of gene annotation and the study of the evolution of intron 5' ss.


Asunto(s)
Sitios de Empalme de ARN , Empalme del ARN , Intrones/genética , Sitios de Empalme de ARN/genética , Secuencia de Bases , Empalme del ARN/genética , Precursores del ARN/genética
3.
Genome Biol Evol ; 10(9): 2551-2557, 2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-30184083

RESUMEN

Most eukaryotic genes contain introns, which are noncoding sequences that are removed during premRNA processing. Introns are usually preserved across evolutionary time. However, the sizes of introns vary greatly. In Arabidopsis, some introns are longer than 10 kilo base pairs (bp) and others are predicted to be shorter than 10 bp. To identify the shortest intron in the genome, we analyzed the predicted introns in annotated version 10 of the Arabidopsis thaliana genome and found 103 predicted introns that are 30 bp or shorter, which make up only 0.08% of all introns in the genome. However, our own bioinformatics and experimental analyses found no evidence for the existence of these predicted introns. The predicted introns of 30-39 bp, 40-49 bp, and 50-59 bp in length are also rare and constitute only 0.07%, 0.2%, and 0.28% of all introns in the genome, respectively. An analysis of 30 predicted introns 31-59 bp long verified two in this range, both of which were 59 bp long. Thus, this study suggests that there is a limit to how small introns in A. thaliana can be, which is useful for the understanding of the evolution and processing of small introns in plants in general.


Asunto(s)
Arabidopsis/genética , Genoma de Planta , Intrones , ADN de Plantas/genética , Evolución Molecular , Genómica
4.
Genes (Basel) ; 9(5)2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-29772783

RESUMEN

Purple acid phosphatases (PAPs) play various physiological roles in plants. AtPAP2 was previously shown to localize to both chloroplasts and mitochondria and to modulate carbon metabolism in Arabidopsis. Over-expression of AtPAP2 resulted in faster growth and increased biomass in several plant species, indicating its great potential for crop improvement of phosphate use and yield. Here, we studied the localization of AtPAP2 by transient expression in tobacco leaves. The results showed AtPAP2 was localized to the plasma membrane through the secretory pathway, which is different from previous studies. We also found that AtPAP2 had a close relationship with fungal PAP2-like proteins based on phylogenetic analysis. In addition, the C-terminal transmembrane domain conserved in land plants is unique among other AtPAPs except AtPAP9, which is a close homolog of AtPAP2. Taken together, our results provide information for further study of AtPAP2 in understanding its special function in crop improvement.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA