Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(4)2021 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-33673348

RESUMEN

The cerebellum, the region of the brain primarily responsible for motor coordination and balance, also contributes to non-motor functions, such as cognition, speech, and language comprehension. Maldevelopment and dysfunction of the cerebellum lead to cerebellar ataxia and may even be associated with autism, depression, and cognitive deficits. Hence, normal development of the cerebellum and its neuronal circuitry is critical for the cerebellum to function properly. Although nine major types of cerebellar neurons have been identified in the cerebellar cortex to date, the exact functions of each type are not fully understood due to a lack of cell-specific markers in neurons that renders cell-specific labeling and functional study by genetic manipulation unfeasible. The availability of cell-specific markers is thus vital for understanding the role of each neuronal type in the cerebellum and for elucidating the interactions between cell types within both the developing and mature cerebellum. This review discusses various technical approaches and recent progress in the search for cell-specific markers for cerebellar neurons.


Asunto(s)
Ataxia Cerebelosa/metabolismo , Corteza Cerebelosa/metabolismo , Neuronas/metabolismo , Animales , Biomarcadores/metabolismo , Humanos
2.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781737

RESUMEN

Neurogenesis is the process by which functional new neurons are generated from the neural stem cells (NSCs) or neural progenitor cells (NPCs). Increasing lines of evidence show that neurogenesis impairment is involved in different neurological illnesses, including mood disorders, neurogenerative diseases, and central nervous system (CNS) injuries. Since reversing neurogenesis impairment was found to improve neurological outcomes in the pathological conditions, it is speculated that modulating neurogenesis is a potential therapeutic strategy for neurological diseases. Among different modulators of neurogenesis, melatonin is a particularly interesting one. In traditional understanding, melatonin controls the circadian rhythm and sleep-wake cycle, although it is not directly involved in the proliferation and survival of neurons. In the last decade, it was reported that melatonin plays an important role in the regulation of neurogenesis, and thus it may be a potential treatment for neurogenesis-related disorders. The present review aims to summarize and discuss the recent findings regarding the protective effects of melatonin on the neurogenesis impairment in different neurological conditions. We also address the molecular mechanisms involved in the actions of melatonin in neurogenesis modulation.


Asunto(s)
Melatonina/uso terapéutico , Enfermedades del Sistema Nervioso/tratamiento farmacológico , Enfermedades del Sistema Nervioso/genética , Neurogénesis , Sustancias Protectoras/uso terapéutico , Envejecimiento/patología , Animales , Humanos , Melatonina/farmacología , Neurogénesis/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Sustancias Protectoras/farmacología
3.
J Physiol ; 594(11): 3111-26, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26752511

RESUMEN

KEY POINTS: Decreased mechanical loading results in skeletal muscle atrophy. The transient receptor potential canonical type 1 (TRPC1) protein is implicated in this process. Investigation of the regulation of TRPC1 in vivo has rarely been reported. In the present study, we employ the mouse hindlimb unloading and reloading model to examine the involvement of TRPC1 in the regulation of muscle atrophy and regrowth, respectively. We establish the physiological relevance of the concept that manipulation of TRPC1 could interfere with muscle regrowth processes following an atrophy-inducing event. Specifically, we show that suppressing TRPC1 expression during reloading impairs the recovery of the muscle mass and slow myosin heavy chain profile. Calcineurin appears to be part of the signalling pathway involved in the regulation of TRPC1 expression during muscle regrowth. These results provide new insights concerning the function of TRPC1. Interventions targeting TRPC1 or its downstream or upstream pathways could be useful for promoting muscle regeneration. ABSTRACT: Decreased mechanical loading, such as bed rest, results in skeletal muscle atrophy. The functional consequences of decreased mechanical loading include a loss of muscle mass and decreased muscle strength, particularly in anti-gravity muscles. The purpose of this investigation was to clarify the regulatory role of the transient receptor potential canonical type 1 (TRPC1) protein during muscle atrophy and regrowth. Mice were subjected to 14 days of hindlimb unloading followed by 3, 7, 14 and 28 days of reloading. Weight-bearing mice were used as controls. TRPC1 expression in the soleus muscle decreased significantly and persisted at 7 days of reloading. Small interfering RNA (siRNA)-mediated downregulation of TRPC1 in weight-bearing soleus muscles resulted in a reduced muscle mass and a reduced myofibre cross-sectional area (CSA). Microinjecting siRNA into soleus muscles in vivo after 7 days of reloading provided further evidence for the role of TRPC1 in regulating muscle regrowth. Myofibre CSA, as well as the percentage of slow myosin heavy chain-positive myofibres, was significantly lower in TRPC1-siRNA-expressing muscles than in control muscles after 14 days of reloading. Additionally, inhibition of calcineurin (CaN) activity downregulated TRPC1 expression in both weight-bearing and reloaded muscles, suggesting a possible association between CaN and TRPC1 during skeletal muscle regrowth.


Asunto(s)
Suspensión Trasera/efectos adversos , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Canales Catiónicos TRPC/biosíntesis , Soporte de Peso/fisiología , Animales , Suspensión Trasera/métodos , Masculino , Ratones , Ratones Endogámicos BALB C , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/patología
4.
Purinergic Signal ; 11(1): 127-38, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25510459

RESUMEN

Purinergic receptors activated by extracellular nucleotides (adenosine 5'-triphosphate (ATP) and uridine 5'-triphosphate (UTP)) are well known to exert physiological effects on the cardiovascular system, whether nucleotides participate functionally in embryonic heart development is not clear. The responsiveness of embryonic cardiomyocytes (E) 12 to P2 receptor agonists by measuring Ca(2+) influx did not present response to ATP, but responses to P2 agonists were detected in cardiomyocytes taken from E14 and E18 rats. Photometry revealed that the responses to ATP were concentration-dependent with an EC50 of 1.32 µM and 0.18 µM for E14 and E18 cardiomyocytes, respectively. In addition, other P2 agonists were also able to induce Ca(2+) mobilization. RT-PCR showed the presence of P2X2 and P2X4 receptor transcripts on E14 cardiomyocytes with a lower expression of P2X3 and P2X7 receptors. P2X1 and a low level of P2X5 receptor messenger RNA (mRNA) were also expressed at E18. Immunofluorescence data indicated that only P2X2 and P2X4 receptor proteins were expressed in E14 cardiomyocytes while protein for all the P2X receptor subtypes was expressed in E18, except for P2X3 and P2X6. Responses mediated by agonists specific for P2Y receptors subtypes showed that P2Y receptors (P2Y1, P2Y2, P2Y4 and P2Y6) were also present in both E14 and E18 cardiomyocytes. Dye transfer experiments showed that ATP induces coupling of cells at E12, but this response is decreased at E14 and lost at E18. Conversely, UTP induced coupling with five or more cells in most cells from E12 to E18. Our results show that specific P2 receptor subtypes are present in embryonic rat cardiomyocytes, including P2X7 and P2Y4 receptors that have not been identified in adult rat cardiomyocytes. The responsiveness to ATP stimulation even before birth, suggests that ATP may be an important messenger in embryonic as well as in adult hearts.


Asunto(s)
Adenosina Trifosfato/farmacología , Miocitos Cardíacos/metabolismo , Agonistas Purinérgicos/farmacología , Receptores Purinérgicos P2/metabolismo , Animales , Calcio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Ratas , Transducción de Señal/efectos de los fármacos
5.
Muscle Nerve ; 49(5): 691-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-23852583

RESUMEN

INTRODUCTION: We assessed the time-dependent changes of transient receptor potential canonical type 1 (TRPC1) and TRPC3 expression and localization associated with muscle atrophy and regrowth in vivo. METHODS: Mice were subjected to hindlimb unloading for 7 or 14 days (7U, 14U) followed by 3, 7, or 14 days of reloading (3R, 7R, 14R). RESULTS: Soleus muscle mass and tetanic force were reduced significantly at 7U and 14U and recovered by 14R. Recovery of muscle fiber cross-sectional area was observed by 28R. TRPC1 mRNA was unaltered during the unloading-reloading period. However, protein expression remained depressed through 14R. Decreased localization of TRPC1 to the sarcolemma was observed. TRPC3 mRNA and protein expression levels were decreased significantly during the early phase of reloading. CONCLUSIONS: Given the known role of these channels in muscle development, changes observed in TRPC1 and TRPC3 may relate closely to muscle atrophy and remodeling processes.


Asunto(s)
Suspensión Trasera/fisiología , Desarrollo de Músculos/fisiología , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , ARN Mensajero/análisis , Canales Catiónicos TRPC/metabolismo , Adaptación Fisiológica , Animales , Técnica del Anticuerpo Fluorescente , Miembro Posterior , Masculino , Ratones , Ratones Endogámicos BALB C , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/patología , Atrofia Muscular/patología , Reacción en Cadena en Tiempo Real de la Polimerasa , Canales Catiónicos TRPC/genética , Factores de Tiempo
6.
Bioelectromagnetics ; 35(3): 161-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24395219

RESUMEN

Reduced collagen deposition possibly leads to slow recovery of tensile strength in the healing process of diabetic cutaneous wounds. Myofibroblasts are transiently present during wound healing and play a key role in wound closure and collagen synthesis. Pulsed electromagnetic fields (PEMF) have been shown to enhance the tensile strength of diabetic wounds. In this study, we examined the effect of PEMF on wound closure and the presence of myofibroblasts in Sprague-Dawley rats after diabetic induction using streptozotocin. A full-thickness square-shaped dermal wound (2 cm × 2 cm) was excised aseptically on the shaved dorsum. The rats were randomly divided into PEMF-treated (5 mT, 25 Hz, 1 h daily) and control groups. The results indicated that there were no significant differences between the groups in blood glucose level and body weight. However, PEMF treatment significantly enhanced wound closure (days 10 and 14 post-wounding) and re-epithelialization (day 10 post-wounding), although these improvements were no longer observed at later stages of the wound healing process. Using immunohistochemistry against α-smooth muscle actin (α-SMA), we demonstrated that significantly more myofibroblasts were detected on days 7 and 10 post-wounding in the PEMF group when compared to the control group. We hypothesized that PEMF would increase the myofibroblast population, contributing to wound closure during diabetic wound healing.


Asunto(s)
Proliferación Celular , Dermis/lesiones , Diabetes Mellitus Experimental/fisiopatología , Magnetoterapia , Miofibroblastos/fisiología , Cicatrización de Heridas , Animales , Dorso , Glucemia , Peso Corporal , Dermis/patología , Dermis/fisiopatología , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/patología , Campos Electromagnéticos , Epitelio/lesiones , Epitelio/patología , Epitelio/fisiopatología , Masculino , Distribución Aleatoria , Ratas , Ratas Sprague-Dawley , Fenómenos Fisiológicos de la Piel , Estreptozocina , Factores de Tiempo
8.
J Biomech Eng ; 135(10): 101009-8, 2013 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-23897493

RESUMEN

An evaluation of wound mechanics is crucial in reflecting the wound healing status. The present study examined the biomechanical properties of healing rat skin wounds in vivo and ex vivo. Thirty male Sprague-Dawley rats, each with a 6 mm full-thickness circular punch biopsied wound at both posterior hind limbs were used. The mechanical stiffness at both the central and margins of the wound was measured repeatedly in five rats over the same wound sites to monitor the longitudinal changes over time of before wounding, and on days 0, 3, 7, 10, 14, and 21 after wounding in vivo by using an optical coherence tomography-based air-jet indentation system. Five rats were euthanized at each time point, and the biomechanical properties of the wound tissues were assessed ex vivo using a tensiometer. At the central wound bed region, the stiffness measured by the air-jet system increased significantly from day 0 (17.2%), peaked at day 7 (208.3%), and then decreased progressively until day 21 (40.2%) as compared with baseline prewounding status. The biomechanical parameters of the skin wound samples measured by the tensiometer showed a marked reduction upon wounding, then increased with time (all p < 0.05). On day 21, the ultimate tensile strength of the skin wound tissue approached 50% of the normal skin; while the stiffness of tissue recovered at a faster rate, reaching 97% of its prewounded state. Our results suggested that it took less time for healing wound tissues to recover their stiffness than their maximal strength in rat skin. The stiffness of wound tissues measured by air-jet could be an indicator for monitoring wound healing and contraction.


Asunto(s)
Ensayo de Materiales/métodos , Fenómenos Mecánicos , Piel/lesiones , Cicatrización de Heridas , Animales , Fenómenos Biomecánicos , Masculino , Ratas , Ratas Sprague-Dawley , Piel/citología , Resistencia a la Tracción
9.
Int Wound J ; 10(6): 645-52, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22776615

RESUMEN

This study examined the effect of monochromatic infrared energy (MIRE) on diabetic wound healing. Fifteen diabetic rats were given MIRE intervention on their skin wounds located on the dorsum and compared with 15 control diabetic rats. Assessments were conducted for each group at weeks 1, 2 and 4 post wounding (five rats at each time point) by calculating the percentage of wound closures (WCs) and performing histological and immunohistochemical staining on sections of wound tissue. Evaluations of WCs and histological examinations of reepithelialisation, cellular content and granulation tissue formation showed no significant difference between the MIRE and the control group at each time point. Through semi-quantitative immunohistochemical staining, the deposition of type I collagen in the MIRE group was found to have improved when compared with the control group at the end of week 2 (P = 0.05). No significant differences in the myofibroblast population were detected between the two groups. In conclusion, MIRE appeared to promote collagen deposition in the early stage of wound healing in diabetic rats, but the overall wound healing in the MIRE group was not significantly different from that of the control group.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Rayos Infrarrojos/uso terapéutico , Piel/lesiones , Cicatrización de Heridas/efectos de la radiación , Heridas y Lesiones/radioterapia , Animales , Masculino , Ratas , Ratas Sprague-Dawley , Piel/patología , Heridas y Lesiones/complicaciones , Heridas y Lesiones/patología
10.
J Cancer ; 14(17): 3214-3226, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37928422

RESUMEN

Research on Rab-like protein 1A (RBEL1A) in the past two decades highlighted the oncogenic properties of this gene. Despite the emerging evidence, its importance in cancer biology was underrated. This is the first RBEL1A critical review covering its discovery, biochemistry, physiological functions, and clinical insights. RBEL1A expression at the appropriate levels appears essential in normal cells and tissues to maintain chromosomal stability; however, its overexpression is linked to tumorigenesis. Furthermore, the upstream and downstream targets of the RBEL1A signaling pathways will be discussed. Mechanistically, RBEL1A promotes cell proliferation signals by enhancing the Erk1/2, Akt, c-Myc, and CDK pathways while blunting the apoptotic signals via inhibitions on p53, Rb, and caspase pathways. More importantly, this review covers the clinical relevance of RBEL1A in the cancer field, such as drug resistance and poor overall survival rate. Also, this review points out the bottle-necks of the RBEL1A research and its future research directions. It is becoming clear that RBEL1A could potentially serve as a valuable target of anticancer therapy. Genetic and pharmacological researches are expected to facilitate the identification and development of RBEL1A inhibitors as cancer therapeutics in the future, which could undoubtedly improve the management of human malignancy.

11.
Int J Biol Macromol ; 253(Pt 5): 127742, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37923039

RESUMEN

Asparaginase has been traditionally applied for only treating acute lymphoblastic leukemia due to its ability to deplete asparagine. However, its ultimate anticancer potential for treating solid tumors has not yet been unleashed. In this study, we bioengineered Erwinia chrysanthemi asparaginase (ErWT), one of the US Food and Drug Administration-approved types of amino acid depleting enzymes, to achieve double amino acid depletions for treating a solid tumor. We constructed a fusion protein by joining an albumin binding domain (ABD) to ErWT via a linker (GGGGS)5 to achieve ABD-ErS5. The ABD could bind to serum albumin to form an albumin-ABD-ErS5 complex, which could avoid renal clearance and escape from anti-drug antibodies, resulting in a remarkably prolonged elimination half-life of ABD-ErS5. Meanwhile, ABD-ErS5 did not only deplete asparagine but also glutamine for ∼2 weeks. A biweekly administration of ABD-ErS5 (1.5 mg/kg) significantly suppressed tumor growth in an MKN-45 gastric cancer xenograft model, demonstrating a novel approach for treating solid tumor depleting asparagine and glutamine. Multiple administrations of ABD-ErS5 did not cause any noticeable histopathological abnormalities of key organs, suggesting the absence of acute toxicity to mice. Our results suggest ABD-ErS5 is a potential therapeutic candidate for treating gastric cancer.


Asunto(s)
Antineoplásicos , Dickeya chrysanthemi , Neoplasias Gástricas , Humanos , Animales , Ratones , Asparaginasa/genética , Asparaginasa/farmacología , Asparaginasa/uso terapéutico , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Dickeya chrysanthemi/genética , Dickeya chrysanthemi/metabolismo , Asparagina , Glutamina , Neoplasias Gástricas/tratamiento farmacológico , Enterobacteriaceae/metabolismo , Albúmina Sérica
12.
Toxics ; 10(5)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35622675

RESUMEN

Cigarette smoke (CS) is the major risk factor for chronic obstructive pulmonary disease (COPD) and can induce systemic manifestations, such as skeletal muscle derangement. However, inconsistent findings of muscle derangement were reported in previous studies. The aim of the present study was to consolidate the available evidence and assess the impact of CS on muscle derangement in rodents. A comprehensive literature search of five electronic databases identified ten articles for final analysis. Results showed that the diaphragm, rectus femoris, soleus, and gastrocnemius exhibited significant oxidative to glycolytic fiber conversions upon CS exposure. In contrast, the extensor digitorum longus (EDL), plantaris, and tibialis did not exhibit a similar fiber-type conversion after CS exposure. Hindlimb muscles, including the quadriceps, soleus, gastrocnemius, and EDL, showed significant reductions in the CSA of the muscle fibers in the CS group when compared to the control group. Changes in inflammatory cytokines, exercise capacity, and functional outcomes induced by CS have also been evaluated. CS could induce a shift from oxidative fibers to glycolytic fibers in high-oxidative muscles such as the diaphragm, rectus femoris, and soleus, and cause muscle atrophy, as reflected by a reduction in the CSA of hindlimb muscles such as the quadriceps, soleus, gastrocnemius, and EDL.

13.
Muscle Nerve ; 44(3): 358-65, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21996795

RESUMEN

INTRODUCTION: TRPC1 and TRPC3 proteins are widely expressed in skeletal muscles in forming calcium-permeable channels. Herein we characterize the expression pattern of TRPC transcripts during skeletal myogenesis in C2C12 myoblasts. METHODS: We used polymerase chain reaction and Western blotting to detect expression levels, immunohistochemistry for subcellular localization, and co-immunoprecipitation techniques to assess interaction. RESULTS: TRPC1 localizes to the cytoplasm and is enriched in the perinuclear region in undifferentiated myoblasts. Expression of TRPC1 increases significantly during myogenesis and resides mainly in differentiated myocytes and myotubes. TRPC3 is absent in undifferentiated myoblasts, is dramatically upregulated in differentiated culture, and is preferentially expressed in myotubes. Physical interaction of TRPC1-TRPC3 was observed, suggesting the possible existence of heteromers. CONCLUSIONS: Expression of TRPC1 and TRPC3 is tightly regulated during myogensis. Evidence of TRPC1-TRPC3 interaction was first demonstrated in a muscle cell line. The functional consequences of this interaction remain to be established.


Asunto(s)
Desarrollo de Músculos/fisiología , Mioblastos Esqueléticos/metabolismo , Canales Catiónicos TRPC/metabolismo , Animales , Diferenciación Celular , Línea Celular , Proliferación Celular , Inmunoprecipitación , Técnicas In Vitro , Ratones , Modelos Animales , Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Mioblastos Esqueléticos/citología , Mapas de Interacción de Proteínas
14.
PLoS One ; 16(8): e0256263, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34398930

RESUMEN

BACKGROUND AND PURPOSE: Several studies have evaluated the effects of high-intensity aerobic training (HIAT) on pain severity and quality of life (QoL) among women with primary dysmenorrhea. However, to date, no studies have evaluated the effectiveness of HIAT on academic performance or absenteeism or examined the cost-effectiveness of HIAT relative to other treatments in women with primary dysmenorrhea. Furthermore, the mechanisms underlying aerobic exercise-induced analgesia in primary dysmenorrhea remain unclear. The objectives of this study are to: (1) evaluate the effects of HIAT on absenteeism and academic performance among university students, (2) identify the underlying mechanisms associated with aerobic exercise-induced analgesia in primary dysmenorrhea, and (3) determine the cost-effectiveness of HIAT compared with a wait-list control (WLC) group receiving usual care. METHODS: A sequential, embedded, mixed-methods study design, including a crossover, randomised controlled trial (RCT) and semi-structured focus groups, will be conducted alongside an economic evaluation. A total of 130 women aged 18-24 years will be randomised into either HIAT (n = 65) or wait-list control (n = 65) groups. Primary outcomes will include average pain intensity, absenteeism from university, and academic performance. Primary mediators will include salivary progesterone and prostaglandin F2α levels. Outcome and meditator variables will be assessed at baseline and post-treatment, at 12 and 28 weeks. An economic analysis will be conducted from the societal and healthcare perspective of Hong Kong. Semi-structured focus groups will be conducted at 32 weeks. Of the 130 participants included in the RCT, 70 will be included in the focus groups. STATISTICAL ANALYSIS: All statistical analyses will be performed on an intention-to-treat basis, using SPSS (version 24). Preliminary analysis using an independent samples t-test and a two-sided, unpaired Student's t-test will be performed to exclude carryover effects and identify within-participant differences in outcome variables between the study periods, respectively. Treatment effects will be evaluated using analysis of variance via a mixed-effects model with fixed effects for intervention, period, and sequence. In all models, random effects will include the participants nested within the sequence as a sampling cluster. The mediation effects will be assessed using the Sobel test. The EQ-5D responses will be converted into utility scores to estimate the gain or loss of quality-adjusted life-years. Seemingly unrelated regression analyses will be used to estimate the total cost differences and effect differences. Qualitative data will be analysed using the process of thematic analysis.


Asunto(s)
Análisis Costo-Beneficio/estadística & datos numéricos , Dismenorrea/prevención & control , Ejercicio Físico , Dolor/prevención & control , Absentismo , Rendimiento Académico/estadística & datos numéricos , Adolescente , Estudios Cruzados , Dinoprost/metabolismo , Dismenorrea/metabolismo , Dismenorrea/fisiopatología , Estudios de Factibilidad , Femenino , Grupos Focales , Humanos , Dolor/metabolismo , Dolor/fisiopatología , Progesterona/metabolismo , Calidad de Vida/psicología , Años de Vida Ajustados por Calidad de Vida , Ensayos Clínicos Controlados Aleatorios como Asunto , Estudiantes , Universidades , Adulto Joven
15.
Front Pharmacol ; 12: 763089, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34925021

RESUMEN

PcActx peptide, identified from the transcriptome of zoantharian Palythoa caribaeorum, was clustered into the phylogeny of analgesic polypeptides from sea anemone Heteractis crispa (known as APHC peptides). APHC peptides were considered as inhibitors of transient receptor potential cation channel subfamily V member 1 (TRPV1). TRPV1 is a calcium-permeable channel expressed in epileptic brain areas, serving as a potential target for preventing epileptic seizures. Through in silico and in vitro analysis, PcActx peptide was shown to be a potential TRPV1 channel blocker. In vivo studies showed that the linear and oxidized PcActx peptides caused concentration-dependent increases in mortality of zebrafish larvae. However, monotreatment with PcActx peptides below the maximum tolerated doses (MTD) did not affect locomotor behavior. Moreover, PcActx peptides (both linear and oxidized forms) could effectively reverse pentylenetetrazol (PTZ)-induced seizure-related behavior in zebrafish larvae and prevent overexpression of c-fos and npas4a at the mRNA level. The excessive production of ROS induced by PTZ was markedly attenuated by both linear and oxidized PcActx peptides. It was also verified that the oxidized PcActx peptide was more effective than the linear one. In particular, oxidized PcActx peptide notably modulated the mRNA expression of genes involved in calcium signaling and γ-aminobutyric acid (GABA)ergic-glutamatergic signaling, including calb1, calb2, gabra1, grm1, gria1b, grin2b, gat1, slc1a2b, gad1b, and glsa. Taken together, PcActx peptide, as a novel neuroactive peptide, exhibits prominent anti-epileptic activity, probably through modulating calcium signaling and GABAergic-glutamatergic signaling, and is a promising candidate for epilepsy management.

16.
J Mol Med (Berl) ; 98(9): 1215-1234, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32712726

RESUMEN

The laboratory mouse is the most commonly used mammalian model for biomedical research. An enormous number of mouse models, such as gene knockout, knockin, and overexpression transgenic mice, have been created over the years. A common practice to maintain a genetically modified mouse line is backcrossing with standard inbred mice over several generations. However, the choice of inbred mouse for backcrossing is critical to phenotypic characterization because phenotypic variabilities are often observed between mice with different genetic backgrounds. In this review, the major features of commonly used inbred mouse lines are discussed. The aim is to provide information for appropriate selection of inbred mouse lines for genetic and behavioral studies.


Asunto(s)
Ratones Endogámicos , Fenotipo , Animales , Cruzamiento , Modelos Animales de Enfermedad , Antecedentes Genéticos , Ratones , Ratones Endogámicos/genética , Ratones Noqueados , Ratones Transgénicos , Modelos Animales
17.
PLoS One ; 15(5): e0233523, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32433675

RESUMEN

Reduced exercise capacity is common in people with chronic obstructive pulmonary diseases (COPD) and chronic smokers and is suggested to be related to skeletal muscle dysfunction. Previous studies using human muscle biopsies have shown fiber-type shifting in chronic smokers particularly those with COPD. These results, however, are confounded with aging effects because people with COPD tend to be older. In the present study, we implemented an acute 7-day cigarette smoke-exposed model using Sprague-Dawley rats to evaluate early effects of cigarette smoking on soleus muscles. Rats (n = 5 per group) were randomly assigned to either a sham air (SA) or cigarette smoking (CS) groups of three different concentrations of total particulate matters (TPM) (CSTPM2.5, CSTPM5, CSTPM10). Significantly lower percentages of type I and higher type IIa fiber were detected in the soleus muscle in CS groups when compared with SA group. Of these, only CSTMP10 group exhibited significantly lower citrate synthase activity and higher muscle tumor necrosis factor-α level than that of SA group. Tumor necrosis factor-α level was correlated with the percentage of type I and IIa fibers. However, no significant between-group differences were found in fiber cross-sectional area, physical activities, or lung function assessments. In conclusion, acute smoking may directly trigger the onset of glycolytic fiber type shift in skeletal muscle independent of aging.


Asunto(s)
Citrato (si)-Sintasa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Proteínas Musculares/metabolismo , Contaminación por Humo de Tabaco/efectos adversos , Factor de Necrosis Tumoral alfa/metabolismo , Animales , Humanos , Masculino , Fibras Musculares Esqueléticas/patología , Ratas , Ratas Sprague-Dawley
18.
Med Hypotheses ; 123: 50-54, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30696591

RESUMEN

The popular accepted explanation for the pathogenesis of primary dysmenorrhea is elevated levels of uterine prostaglandins. Aetiological studies report that production of prostaglandins is controlled by the sex hormone progesterone, with prostaglandins and progesterone displaying an inverse relationship (i.e. increased progesterone levels reduce prostaglandin levels). Pro-inflammatory cytokines (interleukin-6 [IL-6] and tumor necrosis factor-alpha [TNF-α]) are also implicated in the pathogenesis of primary dysmenorrhea. High-intensity aerobic exercise is effective for decreasing pain quality and intensity in women with primary dysmenorrhea. However, why and how aerobic exercise is effective for treatment of primary dysmenorrhea remain unclear. Our preliminary non-randomized controlled pilot study to examine the effects of high-intensity aerobic exercise on progesterone, prostaglandin metabolite (13,14-dihydro-15-keto-prostaglandin F2 alpha (KDPGF2α), TNF-α, and pain intensity found increases in progesterone and decreases in KDPGF2α, TNF-α, and pain intensity following high-intensity aerobic exercise relative to no exercise. Given these promising preliminary findings, as well as what is known about the pathogenesis of primary dysmenorrhea, we propose the following scientific hypothesis: high-intensity aerobic exercise utilizes hormone (progesterone) and inflammatory cytokine-mediated mechanisms to reduce the pain associated with primary dysmenorrhea.


Asunto(s)
Citocinas/metabolismo , Dismenorrea/metabolismo , Ejercicio Físico , Manejo del Dolor/métodos , Progesterona/metabolismo , Prostaglandinas/metabolismo , Dinoprost/análogos & derivados , Dinoprost/metabolismo , Dismenorrea/sangre , Femenino , Hormonas/metabolismo , Humanos , Inflamación , Proyectos Piloto , Útero/metabolismo
19.
BMC Dev Biol ; 8: 76, 2008 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-18680569

RESUMEN

BACKGROUND: Dab2, one of two mammalian orthologs of Drosophila Disabled, has been shown to be involved in cell positioning and formation of visceral endoderm during mouse embryogenesis, but its role in neuronal development is not yet fully understood. In this report, we have examined the localization of the Dab2 protein in the mouse embryonic central nervous system (CNS) at different developmental stages. RESULTS: Dab2 protein was transiently expressed in rhombomeres 5 and 6 of the developing hindbrain between E8.5 and E11.5, and in the floor plate of the neural tube from E9.5 to E12.5, following which it was no longer detectable within these regions. Dab2 protein was also identified within circumventricular organs including the choroid plexus, subcommissural organ and pineal gland during their early development. While Dab2 was still strongly expressed in the adult choroid plexus, immunoreactivity within the subcommissural organ and pineal gland was lost after birth. In addition, Dab2 was transiently expressed within a subpopulation of Iba1-positive mononuclear phagocytes (including presumed microglial progenitors) within the neural tube from E10.0 and was lost by E14.5. Dab2 was separately localized to Iba1 positive cells from E9.5 and subsequently to F4/80 positive cells (mature macrophage/myeloid-derived dendritic cells) positioned outside the neural tube from E12.5 onwards, implicating Dab2 expression in early cells of the mononuclear phagocyte lineage. Dab2 did not co-localize with the pan-neuronal marker PGP9.5 at any developmental stage, suggesting that Dab2 positive cells in the developing CNS are unlikely to be differentiating neurons. CONCLUSION: This is the first study to demonstrate the dynamic spatiotemporal expression of Dab2 protein within the CNS during development.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular/genética , Encéfalo/embriología , Embrión de Mamíferos/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas Reguladoras de la Apoptosis , Ratones , Ratones Endogámicos ICR , Sistema Mononuclear Fagocítico/embriología , Tubo Neural/embriología
20.
Front Physiol ; 9: 999, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30140235

RESUMEN

In muscle regeneration, infiltrating myeloid cells, such as macrophages mediate muscle inflammation by releasing key soluble factors. One such factor, insulin-like growth factor 1 (IGF-1), suppresses inflammatory cytokine expression and mediates macrophage polarization to anti-inflammatory phenotype during muscle injury. Previously the IGF-1Ea isoform was shown to be anti-inflammatory. Another isoform of IGF-1, mechano-growth factor (MGF), is structurally and functionally distinct from IGF-1Ea, but its role in muscle inflammation has not yet been characterized. In this study, we hypothesized that MGF expression in muscle injury modulates muscle inflammation. We first investigated changes of transcription and expression of MGF in response to skeletal muscle injury induced by cardiotoxin (CTX) in vivo. At 1-2 days post-injury, Mgf expression was significantly upregulated and positively correlated with that of inflammatory cytokines. Immunostaining revealed that infiltration of neutrophils and macrophages coincided with Mgf upregulation. Furthermore, infiltrating neutrophils and macrophages expressed Mgf, suggesting their contribution to MGF upregulation in muscle injury. Macrophages seem to be the predominant source of MGF in muscle injury, whereas neutrophil depletion did not affect muscle Mgf expression. Given the association of MGF and macrophages, we then studied whether MGF could affect macrophage infiltration and polarization. To test this, we overexpressed MGF in CTX-injured muscles and evaluated inflammatory marker expression, macrophage populations, and muscle regeneration outcomes. MGF overexpression delayed the resolution of macrophages, particularly the pro-inflammatory phenotype. This coincided with upregulation of inflammatory markers. Annexin V-based flow cytometry revealed that MGF overexpression likely delays macrophage resolution by limiting macrophage apoptosis. Although MGF overexpression did not obviously affect muscle regeneration outcomes, the findings are novel and provide insights on the physiological roles of MGF in muscle regeneration.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA