RESUMEN
White matter pathways, typically studied with diffusion tensor imaging (DTI), have been implicated in the neurobiology of obsessive-compulsive disorder (OCD). However, due to limited sample sizes and the predominance of single-site studies, the generalizability of OCD classification based on diffusion white matter estimates remains unclear. Here, we tested classification accuracy using the largest OCD DTI dataset to date, involving 1336 adult participants (690 OCD patients and 646 healthy controls) and 317 pediatric participants (175 OCD patients and 142 healthy controls) from 18 international sites within the ENIGMA OCD Working Group. We used an automatic machine learning pipeline (with feature engineering and selection, and model optimization) and examined the cross-site generalizability of the OCD classification models using leave-one-site-out cross-validation. Our models showed low-to-moderate accuracy in classifying (1) "OCD vs. healthy controls" (Adults, receiver operator characteristic-area under the curve = 57.19 ± 3.47 in the replication set; Children, 59.8 ± 7.39), (2) "unmedicated OCD vs. healthy controls" (Adults, 62.67 ± 3.84; Children, 48.51 ± 10.14), and (3) "medicated OCD vs. unmedicated OCD" (Adults, 76.72 ± 3.97; Children, 72.45 ± 8.87). There was significant site variability in model performance (cross-validated ROC AUC ranges 51.6-79.1 in adults; 35.9-63.2 in children). Machine learning interpretation showed that diffusivity measures of the corpus callosum, internal capsule, and posterior thalamic radiation contributed to the classification of OCD from HC. The classification performance appeared greater than the model trained on grey matter morphometry in the prior ENIGMA OCD study (our study includes subsamples from the morphometry study). Taken together, this study points to the meaningful multivariate patterns of white matter features relevant to the neurobiology of OCD, but with low-to-moderate classification accuracy. The OCD classification performance may be constrained by site variability and medication effects on the white matter integrity, indicating room for improvement for future research.
Asunto(s)
Imagen de Difusión Tensora , Aprendizaje Automático , Trastorno Obsesivo Compulsivo , Sustancia Blanca , Humanos , Sustancia Blanca/patología , Sustancia Blanca/diagnóstico por imagen , Masculino , Femenino , Adulto , Imagen de Difusión Tensora/métodos , Niño , Adolescente , Encéfalo/patología , Encéfalo/diagnóstico por imagen , Persona de Mediana Edad , Adulto JovenRESUMEN
BACKGROUND: Previous research on the changes in resting-state functional connectivity (rsFC) in anorexia nervosa (AN) has been limited by an insufficient sample size, which reduced the reliability of the results and made it difficult to set the whole brain as regions of interest (ROIs). METHODS: We analyzed functional magnetic resonance imaging data from 114 female AN patients and 135 healthy controls (HC) and obtained self-reported psychological scales, including eating disorder examination questionnaire 6.0. One hundred sixty-four cortical, subcortical, cerebellar, and network parcellation regions were considered as ROIs. We calculated the ROI-to-ROI rsFCs and performed group comparisons. RESULTS: Compared to HC, AN patients showed 12 stronger rsFCs mainly in regions containing dorsolateral prefrontal cortex (DLPFC), and 33 weaker rsFCs primarily in regions containing cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between anterior cingulate cortex (ACC) and thalamus (p < 0.01, false discovery rate [FDR] correction). Comparisons between AN subtypes showed that there were stronger rsFCs between right lingual gyrus and right supracalcarine cortex and between left temporal occipital fusiform cortex and medial part of visual network in the restricting type compared to the binge/purging type (p < 0.01, FDR correction). CONCLUSION: Stronger rsFCs in regions containing mainly DLPFC, and weaker rsFCs in regions containing primarily cerebellum, within temporal lobe, between posterior fusiform cortex and lateral part of visual network, and between ACC and thalamus, may represent categorical diagnostic markers discriminating AN patients from HC.
Asunto(s)
Anorexia Nerviosa , Imagen por Resonancia Magnética , Humanos , Anorexia Nerviosa/fisiopatología , Anorexia Nerviosa/diagnóstico por imagen , Femenino , Estudios Transversales , Adulto , Adulto Joven , Adolescente , Encéfalo/fisiopatología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico/métodos , Giro del Cíngulo/fisiopatología , Giro del Cíngulo/diagnóstico por imagen , Estudios de Casos y Controles , Cerebelo/diagnóstico por imagen , Cerebelo/fisiopatología , Conectoma/métodosRESUMEN
Background: Generalized anxiety disorder (GAD) and social anxiety disorder (SAD) are distinguished by whether anxiety is limited to social situations. However, reports on the differences in brain functional networks between GAD and SAD are few. Our objective is to understand the pathogenesis of GAD and SAD by examining the differences in resting brain function between patients with GAD and SAD and healthy controls (HCs). Methods: This study included 21 patients with SAD, 17 patients with GAD, and 30 HCs. Participants underwent psychological assessments and resting-state functional magnetic resonance imaging. Whole-brain analyses were performed to compare resting-state functional connectivity (rsFC) among the groups. In addition, logistic regression analysis was conducted on the rsFC to identify significant differences between GAD and SAD. Results: Patients with SAD and GAD had significantly higher rsFC between the bilateral postcentral gyri and bilateral amygdalae/thalami than HCs. Compared with patients with SAD, those with GAD had significantly higher rsFC between the right nucleus accumbens and bilateral thalami and between the left nucleus accumbens and right thalamus. rsFC between the left nucleus accumbens and right thalamus positively correlated with state anxiety in patients with SAD and GAD, respectively. In addition, logistic regression analysis revealed that the right nucleus accumbens and the right thalamus connectivity could distinguish SAD from GAD. Conclusions: GAD and SAD were distinguished by the right nucleus accumbens and the right thalamus connectivity. Our findings offer insights into the disease-specific neural basis of SAD and GAD. Clinical Trial Registration Number: UMIN000024087. Impact Statement This study is the first to identify a resting state functional connectivity that distinguishes social anxiety disorder (SAD) from generalized anxiety disorder (GAD) and to clarify a common connectivity in both disorders. We found that the connectivity between the right nucleus accumbens and the right thalamus differentiated SAD from GAD. Furthermore, these rsFC differences suggest an underlying basis for fear overgeneralization. Our findings shed light on the pathophysiology of these conditions and could be used as a basis for further studies to improve outcomes for such patients.
Asunto(s)
Trastornos de Ansiedad , Imagen por Resonancia Magnética , Núcleo Accumbens , Fobia Social , Tálamo , Humanos , Masculino , Femenino , Núcleo Accumbens/diagnóstico por imagen , Núcleo Accumbens/fisiopatología , Imagen por Resonancia Magnética/métodos , Adulto , Tálamo/fisiopatología , Tálamo/diagnóstico por imagen , Trastornos de Ansiedad/fisiopatología , Trastornos de Ansiedad/diagnóstico por imagen , Fobia Social/fisiopatología , Fobia Social/diagnóstico por imagen , Vías Nerviosas/fisiopatología , Vías Nerviosas/diagnóstico por imagen , Adulto Joven , Mapeo Encefálico/métodos , Red Nerviosa/fisiopatología , Red Nerviosa/diagnóstico por imagen , Descanso , Persona de Mediana EdadRESUMEN
Introduction: Previous neuroimaging studies in social anxiety disorders (SAD) have reported potential neural predictors of cognitive behavioral therapy (CBT)-related brain changes. However, several meta-analyses have demonstrated that cognitive therapy (CT) was superior to traditional exposure-based CBT for SAD. Objective: To explore resting-state functional connectivity (rsFC) to evaluate the response to individual CT for SAD patients. Methods: Twenty SAD patients who attended 16-week individual CT were scanned pre- and post-therapy along with twenty healthy controls (HCs). The severity of social anxiety was assessed with the Liebowitz Social Anxiety Scale (LSAS). Multi-voxel pattern analysis (MVPA) was performed on the pre-CT data to extract regions associated with a change in LSAS (∆LSAS). Group comparisons of the seed-based rsFC analysis were performed between the HCs and pre-CT patients and between the pre-and post-CT patients. Results: MVPA-based regression analysis revealed that rsFC between the left thalamus and the frontal pole/inferior frontal gyrus was significantly correlated with ∆LSAS (adjusted R2 = 0.65; p = 0.00002). Compared with HCs, the pre-CT patients had higher rsFCs between the thalamus and temporal pole and between the thalamus and superior/middle temporal gyrus/planum temporale (p < 0.05). The rsFC between the thalamus and the frontal pole decreased post-CT (p < 0.05). Conclusion: SAD patients had significant rsFC between the thalamus and temporal pole, superior/middle temporal gyrus, and planum temporale, which may be indicators of extreme anxiety in social situations. In addition, rsFC between the thalamus and the frontal pole may be a neuromarker for the effectiveness of individual CT.