Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
PLoS Pathog ; 18(4): e1010425, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35381053

RESUMEN

Although Salmonella Typhimurium (STM) and Salmonella Paratyphi A (SPA) belong to the same phylogenetic species, share large portions of their genome and express many common virulence factors, they differ vastly in their host specificity, the immune response they elicit, and the clinical manifestations they cause. In this work, we compared their intracellular transcriptomic architecture and cellular phenotypes during human epithelial cell infection. While transcription induction of many metal transport systems, purines, biotin, PhoPQ and SPI-2 regulons was similar in both intracellular SPA and STM, we identified 234 differentially expressed genes that showed distinct expression patterns in intracellular SPA vs. STM. Surprisingly, clear expression differences were found in SPI-1, motility and chemotaxis, and carbon (mainly citrate, galactonate and ethanolamine) utilization pathways, indicating that these pathways are regulated differently during their intracellular phase. Concurring, on the cellular level, we show that while the majority of STM are non-motile and reside within Salmonella-Containing Vacuoles (SCV), a significant proportion of intracellular SPA cells are motile and compartmentalized in the cytosol. Moreover, we found that the elevated expression of SPI-1 and motility genes by intracellular SPA results in increased invasiveness of SPA, following exit from host cells. These findings demonstrate unexpected flagellum-dependent intracellular motility of a typhoidal Salmonella serovar and intriguing differences in intracellular localization between typhoidal and non-typhoidal salmonellae. We propose that these differences facilitate new cycles of host cell infection by SPA and may contribute to the ability of SPA to disseminate beyond the intestinal lamina propria of the human host during enteric fever.


Asunto(s)
Quimiotaxis , Salmonella paratyphi A , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Flagelos/genética , Flagelos/metabolismo , Péptidos y Proteínas de Señalización Intercelular , Filogenia , Salmonella paratyphi A/metabolismo , Salmonella typhimurium
2.
Bioinformatics ; 33(20): 3283-3285, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28637232

RESUMEN

MOTIVATION: Genome sequencing projects sometimes uncover more organisms than expected, especially for complex and/or non-model organisms. It is therefore useful to develop software to identify mix of organisms from genome sequence assemblies. RESULTS: Here we present PhylOligo, a new package including tools to explore, identify and extract organism-specific sequences in a genome assembly using the analysis of their DNA compositional characteristics. AVAILABILITY AND IMPLEMENTATION: The tools are written in Python3 and R under the GPLv3 Licence and can be found at https://github.com/itsmeludo/Phyloligo/. CONTACT: ludovic.mallet@inra.fr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Genómica/métodos , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Bacterias/genética , Eucariontes/genética
3.
BMC Genomics ; 18(1): 882, 2017 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-29145803

RESUMEN

BACKGROUND: Small regulatory RNAs (sRNAs) are widely found in bacteria and play key roles in many important physiological and adaptation processes. Studying their evolution and screening for events of coevolution with other genomic features is a powerful way to better understand their origin and assess a common functional or adaptive relationship between them. However, evolution and coevolution of sRNAs with coding genes have been sparsely investigated in bacterial pathogens. RESULTS: We designed a robust and generic phylogenomics approach that detects correlated evolution between sRNAs and protein-coding genes using their observed and inferred patterns of presence-absence in a set of annotated genomes. We applied this approach on 79 complete genomes of the Listeria genus and identified fifty-two accessory sRNAs, of which most were present in the Listeria common ancestor and lost during Listeria evolution. We detected significant coevolution between 23 sRNA and 52 coding genes and inferred the Listeria sRNA-coding genes coevolution network. We characterized a main hub of 12 sRNAs that coevolved with genes encoding cell wall proteins and virulence factors. Among them, an sRNA specific to L. monocytogenes species, rli133, coevolved with genes involved either in pathogenicity or in interaction with host cells, possibly acting as a direct negative post-transcriptional regulation. CONCLUSIONS: Our approach allowed the identification of candidate sRNAs potentially involved in pathogenicity and host interaction, consistent with recent findings on known pathogenicity actors. We highlight four sRNAs coevolving with seven internalin genes, some of which being important virulence factors in Listeria.


Asunto(s)
Proteínas Bacterianas/genética , Evolución Molecular , Listeria/genética , ARN Pequeño no Traducido/genética , Redes Reguladoras de Genes , Genes Bacterianos , Genoma Bacteriano , Listeria/patogenicidad
4.
BMC Bioinformatics ; 16: 111, 2015 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-25885358

RESUMEN

BACKGROUND: Comparing and aligning genomes is a key step in analyzing closely related genomes. Despite the development of many genome aligners in the last 15 years, the problem is not yet fully resolved, even when aligning closely related bacterial genomes of the same species. In addition, no procedures are available to assess the quality of genome alignments or to compare genome aligners. RESULTS: We designed an original method for pairwise genome alignment, named YOC, which employs a highly sensitive similarity detection method together with a recent collinear chaining strategy that allows overlaps. YOC improves the reliability of collinear genome alignments, while preserving or even improving sensitivity. We also propose an original qualitative evaluation criterion for measuring the relevance of genome alignments. We used this criterion to compare and benchmark YOC with five recent genome aligners on large bacterial genome datasets, and showed it is suitable for identifying the specificities and the potential flaws of their underlying strategies. CONCLUSIONS: The YOC prototype is available at https://github.com/ruricaru/YOC . It has several advantages over existing genome aligners: (1) it is based on a simplified two phase alignment strategy, (2) it is easy to parameterize, (3) it produces reliable genome alignments, which are easier to analyze and to use.


Asunto(s)
Interfaz Usuario-Computador , Algoritmos , Hibridación Genómica Comparativa , Genoma Bacteriano , Internet , Lactococcus lactis/genética , Alineación de Secuencia
5.
BMC Genomics ; 16: 275, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25887031

RESUMEN

BACKGROUND: Changes to mRNA lifetime adjust mRNA concentration, facilitating the adaptation of growth rate to changes in growth conditions. However, the mechanisms regulating mRNA lifetime are poorly understood at the genome-wide scale and have not been investigated in bacteria growing at different rates. RESULTS: We used linear covariance models and the best model selected according to the Akaike information criterion to identify and rank intrinsic and extrinsic general transcript parameters correlated with mRNA lifetime, using mRNA half-life datasets for E. coli, obtained at four growth rates. The principal parameter correlated with mRNA stability was mRNA concentration, the mRNAs most concentrated in the cells being the least stable. However, sequence-related features (codon adaptation index (CAI), ORF length, GC content, polycistronic mRNA), gene function and essentiality also affected mRNA lifetime at all growth rates. We also identified sequence motifs within the 5'UTRs potentially related to mRNA stability. Growth rate-dependent effects were confined to particular functional categories (e.g. carbohydrate and nucleotide metabolism). Finally, mRNA stability was less strongly correlated with the amount of protein produced than mRNA concentration and CAI. CONCLUSIONS: This study provides the most complete genome-wide analysis to date of the general factors correlated with mRNA lifetime in E. coli. We have generalized for the entire population of transcripts or excluded determinants previously defined as regulators of stability for some particular mRNAs and identified new, unexpected general indicators. These results will pave the way for discussions of the underlying mechanisms and their interaction with the growth physiology of bacteria.


Asunto(s)
Escherichia coli/genética , Genoma Bacteriano , ARN Mensajero/metabolismo , Regiones no Traducidas 5' , Composición de Base , Secuencia de Bases , Codón/metabolismo , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Semivida , Modelos Biológicos , Sistemas de Lectura Abierta/genética , Estabilidad del ARN
6.
BMC Genomics ; 16: 296, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25886522

RESUMEN

BACKGROUND: Propionibacterium freudenreichii (PF) is an actinobacterium used in cheese technology and for its probiotic properties. PF is also extremely adaptable to several ecological niches and can grow on a variety of carbon and nitrogen sources. The aim of this work was to discover the genetic basis for strain-dependent traits related to its ability to use specific carbon sources. High-throughput sequencing technologies were ideal for this purpose as they have the potential to decipher genomic diversity at a moderate cost. RESULTS: 21 strains of PF were sequenced and the genomes were assembled de novo. Scaffolds were ordered by comparison with the complete reference genome CIRM-BIA1, obtained previously using traditional Sanger sequencing. Automatic functional annotation and manual curation were performed. Each gene was attributed to either the core genome or an accessory genome. The ability of the 21 strains to degrade 50 different sugars was evaluated. Thirty-three sugars were degraded by none of the sequenced strains whereas eight sugars were degraded by all of them. The corresponding genes were present in the core genome. Lactose, melibiose and xylitol were only used by some strains. In this case, the presence/absence of genes responsible for carbon uptake and degradation correlated well with the phenotypes, with the exception of xylitol. Furthermore, the simultaneous presence of these genes was in line the metabolic pathways described previously in other species. We also considered the genetic origin (transduction, rearrangement) of the corresponding genomic islands. Ribose and gluconate were degraded to a greater or lesser extent (quantitative phenotype) by some strains. For these sugars, the phenotypes could not be explained by the presence/absence of a gene but correlated with the premature appearance of a stop codon interrupting protein synthesis and preventing the catabolism of corresponding carbon sources. CONCLUSION: These results illustrate (i) the power of correlation studies to discover the genetic basis of binary strain-dependent traits, and (ii) the plasticity of PF chromosomes, probably resulting from horizontal transfers, duplications, transpositions and an accumulation of mutations. Knowledge of the genetic basis of nitrogen and sugar degradation opens up new strategies for the screening of PF strain collections to enable optimum cheese starter, probiotic and white biotechnology applications.


Asunto(s)
Metabolismo de los Hidratos de Carbono/genética , Genoma Bacteriano , Islas Genómicas/genética , Propionibacterium/genética , Queso/microbiología , ADN Bacteriano/análisis , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Redes y Vías Metabólicas/genética , Mutación , Nitratos/metabolismo , Fenotipo , Filogenia , Propionibacterium/clasificación , Análisis de Secuencia de ADN , Especificidad de la Especie
7.
Microbiol Spectr ; 12(6): e0031224, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38747598

RESUMEN

The management of food fermentation is still largely based on empirical knowledge, as the dynamics of microbial communities and the underlying metabolic networks that produce safe and nutritious products remain beyond our understanding. Although these closed ecosystems contain relatively few taxa, they have not yet been thoroughly characterized with respect to how their microbial communities interact and dynamically evolve. However, with the increased availability of metataxonomic data sets on different fermented vegetables, it is now possible to gain a comprehensive understanding of the microbial relationships that structure plant fermentation. In this study, we applied a network-based approach to the integration of public metataxonomic 16S data sets targeting different fermented vegetables throughout time. Specifically, we aimed to explore, compare, and combine public 16S data sets to identify shared associations between amplicon sequence variants (ASVs) obtained from independent studies. The workflow includes steps for searching and selecting public time-series data sets and constructing association networks of ASVs based on co-abundance metrics. Networks for individual data sets are then integrated into a core network, highlighting significant associations. Microbial communities are identified based on the comparison and clustering of ASV networks using the "stochastic block model" method. When we applied this method to 10 public data sets (including a total of 931 samples) targeting five varieties of vegetables with different sampling times, we found that it was able to shed light on the dynamics of vegetable fermentation by characterizing the processes of community succession among different bacterial assemblages. IMPORTANCE: Within the growing body of research on the bacterial communities involved in the fermentation of vegetables, there is particular interest in discovering the species or consortia that drive different fermentation steps. This integrative analysis demonstrates that the reuse and integration of public microbiome data sets can provide new insights into a little-known biotope. Our most important finding is the recurrent but transient appearance, at the beginning of vegetable fermentation, of amplicon sequence variants (ASVs) belonging to Enterobacterales and their associations with ASVs belonging to Lactobacillales. These findings could be applied to the design of new fermented products.


Asunto(s)
Bacterias , Fermentación , Microbiología de Alimentos , Microbiota , ARN Ribosómico 16S , Verduras , Verduras/microbiología , Bacterias/genética , Bacterias/clasificación , Bacterias/metabolismo , Bacterias/aislamiento & purificación , Microbiota/genética , ARN Ribosómico 16S/genética , Alimentos Fermentados/microbiología , Filogenia
8.
Antibiotics (Basel) ; 12(3)2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36978446

RESUMEN

Tetracycline resistance in streptococci is mainly due to ribosomal protection mediated by the tet(M) gene that is usually located in the integrative and conjugative elements (ICEs) of the Tn916-family. In this study, we analyzed the genes involved in tetracycline resistance and the associated mobile genetic elements (MGEs) in Streptococcus dysgalactiae subsp. equisimilis (SDSE) causing invasive disease. SDSE resistant to tetracycline collected from 2012 to 2019 in a single hospital and from 2018 in three other hospitals were analyzed by whole genome sequencing. Out of a total of 84 SDSE isolates, 24 (28.5%) were resistant to tetracycline due to the presence of tet(M) (n = 22), tet(W) (n = 1), or tet(L) plus tet(W) (n = 1). The tet(M) genes were found in the ICEs of the Tn916-family (n = 10) and in a new integrative and mobilizable element (IME; n = 12). Phylogenetic analysis showed a higher genetic diversity among the strains carrying Tn916 than those having the new IME, which were closely related, and all belonged to CC15. In conclusion, tetracycline resistance in SDSE is mostly due to the tet(M) gene associated with ICEs belonging to the Tn916-family and a new IME. This new IME is a major cause of tetracycline resistance in invasive Streptococcus dysgalactiae subsp. equisimilis in our settings.

9.
mSphere ; 8(2): e0049522, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36794931

RESUMEN

Enterococcus cecorum is an emerging pathogen responsible for osteomyelitis, spondylitis, and femoral head necrosis causing animal suffering and mortality and requiring antimicrobial use in poultry. Paradoxically, E. cecorum is a common inhabitant of the intestinal microbiota of adult chickens. Despite evidence suggesting the existence of clones with pathogenic potential, the genetic and phenotypic relatedness of disease-associated isolates remains little investigated. Here, we sequenced and analyzed the genomes and characterized the phenotypes of more than 100 isolates, the majority of which were collected over the last 10 years from 16 French broiler farms. Comparative genomics, genome-wide association studies, and the measured susceptibility to serum, biofilm-forming capacity, and adhesion to chicken type II collagen were used to identify features associated with clinical isolates. We found that none of the tested phenotypes could discriminate the origin of the isolates or the phylogenetic group. Instead, we found that most clinical isolates are grouped phylogenetically, and our analyses selected six genes that discriminate 94% of isolates associated with disease from those that are not. Analysis of the resistome and the mobilome revealed that multidrug-resistant clones of E. cecorum cluster into a few clades and that integrative conjugative elements and genomic islands are the main carriers of antimicrobial resistance. This comprehensive genomic analysis shows that disease-associated clones of E. cecorum belong mainly to one phylogenetic clade. IMPORTANCE Enterococcus cecorum is an important pathogen of poultry worldwide. It causes a number of locomotor disorders and septicemia, particularly in fast-growing broilers. Animal suffering, antimicrobial use, and associated economic losses require a better understanding of disease-associated E. cecorum isolates. To address this need, we performed whole-genome sequencing and analysis of a large collection of isolates responsible for outbreaks in France. By providing the first data set on the genetic diversity and resistome of E. cecorum strains circulating in France, we pinpoint an epidemic lineage that is probably also circulating elsewhere that should be targeted preferentially by preventive strategies in order to reduce the burden of E. cecorum-related diseases.


Asunto(s)
Antiinfecciosos , Enfermedades de las Aves de Corral , Animales , Aves de Corral , Pollos , Estudio de Asociación del Genoma Completo , Filogenia
10.
J Bacteriol ; 194(9): 2385-6, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22493197

RESUMEN

Salmonella enterica subsp. enterica serotype Senftenberg is an emerging serotype in poultry production which has been found to persist in animals and the farm environment. We report the genome sequence and annotation of the SS209 strain of S. Senftenberg, isolated from a hatchery, which was identified as persistent in broiler chickens.


Asunto(s)
Genoma Bacteriano , Salmonella enterica/clasificación , Salmonella enterica/genética , Cromosomas Bacterianos , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular
11.
J Bacteriol ; 194(9): 2387-8, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22493198

RESUMEN

Salmonella enterica subsp. enterica serotype Enteritidis is one of the major causes of gastroenteritis in humans due to consumption of poultry derivatives. Here we report the whole-genome sequence and annotation, including the virulence plasmid, of S. Enteritidis LA5, which is a chicken isolate used by numerous laboratories in virulence studies.


Asunto(s)
Genoma Bacteriano , Salmonella enterica/clasificación , Salmonella enterica/genética , Cromosomas Bacterianos , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular
12.
PLoS Genet ; 5(1): e1000344, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19165319

RESUMEN

The Escherichia coli species represents one of the best-studied model organisms, but also encompasses a variety of commensal and pathogenic strains that diversify by high rates of genetic change. We uniformly (re-) annotated the genomes of 20 commensal and pathogenic E. coli strains and one strain of E. fergusonii (the closest E. coli related species), including seven that we sequenced to completion. Within the approximately 18,000 families of orthologous genes, we found approximately 2,000 common to all strains. Although recombination rates are much higher than mutation rates, we show, both theoretically and using phylogenetic inference, that this does not obscure the phylogenetic signal, which places the B2 phylogenetic group and one group D strain at the basal position. Based on this phylogeny, we inferred past evolutionary events of gain and loss of genes, identifying functional classes under opposite selection pressures. We found an important adaptive role for metabolism diversification within group B2 and Shigella strains, but identified few or no extraintestinal virulence-specific genes, which could render difficult the development of a vaccine against extraintestinal infections. Genome flux in E. coli is confined to a small number of conserved positions in the chromosome, which most often are not associated with integrases or tRNA genes. Core genes flanking some of these regions show higher rates of recombination, suggesting that a gene, once acquired by a strain, spreads within the species by homologous recombination at the flanking genes. Finally, the genome's long-scale structure of recombination indicates lower recombination rates, but not higher mutation rates, at the terminus of replication. The ensuing effect of background selection and biased gene conversion may thus explain why this region is A+T-rich and shows high sequence divergence but low sequence polymorphism. Overall, despite a very high gene flow, genes co-exist in an organised genome.


Asunto(s)
Escherichia coli/genética , Genoma Bacteriano , Elementos Transponibles de ADN , Evolución Molecular , Genética , Genoma , Genómica , Funciones de Verosimilitud , Modelos Biológicos , Modelos Genéticos , Filogenia , Polimorfismo Genético , Recombinación Genética
13.
BMC Res Notes ; 15(1): 157, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538580

RESUMEN

OBJECTIVES: 'Integrative and Conjugative Elements' (ICEs) and 'Integrative and Mobilizable Elements' (IMEs) are two classes of mobile genetic elements that are complex to detect and delineate. Therefore, they are yet poorly annotated in bacterial genomes. FirmiData provides to the scientific community of microbiologists and bioinformaticians a reference resource of annotated ICEs and of IMEs from Firmicutes. It illustrates their prevalence and their diversity but also gives information on their organization. FirmiData was designed to assist the scientific community in identifying and annotating these elements by using the sequences of these ICEs and IMEs for the identification of related elements in other genomes of Firmicutes. Therefore, Firmidata meets the needs of the scientific community. DATA DESCRIPTION: Firmidata provides a manually curated annotation of 98 ICEs and 148 IMEs identified in 40 chromosomes of Firmicutes. The delineation at the nucleotide level of almost all of these elements allows for the characterization of the genes they carry.


Asunto(s)
Conjugación Genética , Firmicutes , Cromosomas , Elementos Transponibles de ADN , Transferencia de Gen Horizontal , Genoma Bacteriano/genética
14.
PLoS One ; 17(11): e0271847, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36399439

RESUMEN

Faecalibacterium prausnitzii is abundant in the healthy human intestinal microbiota, and the absence or scarcity of this bacterium has been linked with inflammatory diseases and metabolic disorders. F. prausnitzii thus shows promise as a next-generation probiotic for use in restoring the balance of the gut microbial flora and, due to its strong anti-inflammatory properties, for the treatment of certain pathological conditions. However, very little information is available about gene function and regulation in this species. Here, we utilized a systems biology approach-weighted gene co-expression network analysis (WGCNA)-to analyze gene expression in three publicly available RNAseq datasets from F. prausnitzii strain A2-165, all obtained in different laboratory conditions. The co-expression network was then subdivided into 24 co-expression gene modules. A subsequent enrichment analysis revealed that these modules are associated with different kinds of biological processes, such as arginine, histidine, cobalamin, or fatty acid metabolism as well as bacteriophage function, molecular chaperones, stress response, or SOS response. Some genes appeared to be associated with mechanisms of protection against oxidative stress and could be essential for F. prausnitzii's adaptation and survival under anaerobic laboratory conditions. Hub and bottleneck genes were identified by analyses of intramodular connectivity and betweenness, respectively; this highlighted the high connectivity of genes located on mobile genetic elements, which could promote the genetic evolution of F. prausnitzii within its ecological niche. This study provides the first exploration of the complex regulatory networks in F. prausnitzii, and all of the "omics" data are available online for exploration through a graphical interface at https://shiny.migale.inrae.fr/app/faeprau.


Asunto(s)
Microbioma Gastrointestinal , Probióticos , Humanos , Faecalibacterium prausnitzii/genética , Simbiosis , Microbioma Gastrointestinal/genética , Antiinflamatorios
15.
NAR Genom Bioinform ; 4(4): lqac079, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36285285

RESUMEN

Mobile Genetic Elements (MGEs) are integrated in bacterial genomes and key elements that drive prokaryote genome evolution. Among them are Integrative and Conjugative Elements (ICEs) and Integrative Mobilizable Elements (IMEs) which are important for bacterial fitness since they frequently carry genes participating in important bacterial adaptation phenotypes such as antibiotic resistance, virulence or specialized metabolic pathways. Although ICEs and IMEs are widespread, they are as yet almost never annotated in public bacterial genomes. To address the need of dedicated strategies for the annotation of these elements, we developed ICEscreen, a tool that introduces two new features to detect ICEs and IMEs in Firmicute genomes. First, ICEscreen uses an efficient strategy to detect Signature Proteins of ICEs and IMEs based on a database dedicated to Firmicutes and composed of manually curated proteins and Hidden Markov Models (HMM) profiles. Second, ICEscreen includes a new original algorithm that detects composite structures of ICEs and IMEs that are frequent in genomes of Firmicutes but are currently not resolved by any other tool. We benchmarked ICEscreen on experimentally supported elements and on a public dataset of 246 manually annotated elements including the genomes of 40 Firmicutes and demonstrate its efficiency to detect ICEs and IMEs.

16.
Microbiol Resour Announc ; 11(2): e0121921, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35084224

RESUMEN

The genome of the Bacillus velezensis P1 strain isolated from a biofilm on the wall of a pig farm was sequenced. The strain harbors many surface colonization genes involved in surfactant, matrix, and antibacterial synthesis.

17.
J Bacteriol ; 193(18): 5041-2, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21742894

RESUMEN

Streptococcus salivarius is a commensal species commonly found in the human oral cavity and digestive tract, although it is also associated with human infections such as meningitis, endocarditis, and bacteremia. Here, we report the complete sequence of S. salivarius strain CCHSS3, isolated from human blood.


Asunto(s)
ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Streptococcus/genética , Sangre/microbiología , Humanos , Datos de Secuencia Molecular , Sepsis/microbiología , Infecciones Estreptocócicas/microbiología , Streptococcus/aislamiento & purificación
18.
Microbiol Resour Announc ; 10(9)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33664152

RESUMEN

We report the complete genome sequence of Staphylococcus epidermidis commensal strain PH1-28, isolated from the forehead of a healthy donor. The assembled 2.6-Mbp genome consisted of one chromosome and five plasmids. These data will provide valuable information and important insights into the physiology and metabolism of this skin flora microorganism.

19.
PLoS Genet ; 3(9): 1614-21, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17941709

RESUMEN

Bacterial biodiversity at the species level, in terms of gene acquisition or loss, is so immense that it raises the question of how essential chromosomal regions are spared from uncontrolled rearrangements. Protection of the genome likely depends on specific DNA motifs that impose limits on the regions that undergo recombination. Although most such motifs remain unidentified, they are theoretically predictable based on their genomic distribution properties. We examined the distribution of the "crossover hotspot instigator," or Chi, in Escherichia coli, and found that its exceptional distribution is restricted to the core genome common to three strains. We then formulated a set of criteria that were incorporated in a statistical model to search core genomes for motifs potentially involved in genome stability in other species. Our strategy led us to identify and biologically validate two distinct heptamers that possess Chi properties, one in Staphylococcus aureus, and the other in several streptococci. This strategy paves the way for wide-scale discovery of other important functional noncoding motifs that distinguish core genomes from the strain-variable regions.


Asunto(s)
ADN Bacteriano/genética , Genoma Bacteriano , Modelos Genéticos , Bacterias/genética , Secuencia de Bases , Intercambio Genético , Recombinación Genética
20.
Genes (Basel) ; 11(9)2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32858915

RESUMEN

Streptococcus salivarius is a significant contributor to the human oral, pharyngeal and gut microbiomes that contribute to the maintenance of health. The high genomic diversity observed in this species is mainly caused by horizontal gene transfer. This work aimed to evaluate the contribution of integrative and conjugative elements (ICEs) and integrative and mobilizable elements (IMEs) in S. salivarius genome diversity. For this purpose, we performed an in-depth analysis of 75 genomes of S. salivarius and searched for signature genes of conjugative and mobilizable elements. This analysis led to the retrieval of 69 ICEs, 165 IMEs and many decayed elements showing their high prevalence in S. salivarius genomes. The identification of almost all ICE and IME boundaries allowed the identification of the genes in which these elements are inserted. Furthermore, the exhaustive analysis of the adaptation genes carried by these elements showed that they encode numerous functions such as resistance to stress, to antibiotics or to toxic compounds, and numerous enzymes involved in diverse cellular metabolic pathways. These data support the idea that not only ICEs but also IMEs and decayed elements play an important role in S. salivarius adaptation to the environment.


Asunto(s)
Adaptación Fisiológica , Conjugación Genética , Elementos Transponibles de ADN , Variación Genética , Genoma Bacteriano , Secuencias Repetitivas Esparcidas , Streptococcus salivarius/genética , Ambiente , Evolución Molecular , Genómica , Humanos , Streptococcus salivarius/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA