Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Bioorg Med Chem Lett ; 27(5): 1124-1128, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28185720

RESUMEN

The paper describes the SAR/SPR studies that led to the discovery of phenoxy cyclopropyl phenyl acetamide derivatives as potent and selective GPR119 agonists. Based on a cis cyclopropane scaffold discovered previously, phenyl acetamides such as compound 17 were found to have excellent GPR119 potency and improved physicochemical properties. Pharmacokinetic data of compound 17 in rat, dog and rhesus will be described. Compound 17 was suitable for QD dosing based on its predicted human half-life, and its projected human dose was much lower than that of the recently reported structurally-related benzyloxy compound 2. Compound 17 was selected as a tool compound candidate for NHP (Non-Human Primate) efficacy studies.


Asunto(s)
Acetamidas/farmacología , Receptores Acoplados a Proteínas G/agonistas , Acetamidas/farmacocinética , Animales , Semivida , Humanos , Puntos Cuánticos , Ratas , Relación Estructura-Actividad
2.
Bioorg Med Chem Lett ; 26(6): 1529-1535, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26898814

RESUMEN

MK-4256, a tetrahydro-ß-carboline sstr3 antagonist, was discontinued due to a cardiovascular (CV) adverse effect observed in dogs. Additional investigations revealed that the CV liability (QTc prolongation) was caused by the hERG off-target activity of MK-4256 and was not due to sstr3 antagonism. In this Letter, we describe our extensive SAR effort at the C3 position of the tetrahydro-ß-carboline structure. This effort resulted in identification of 5-fluoro-pyridin-2-yl as the optimal substituent on the imidazole ring to balance sstr3 activity and the hERG off-target liability.


Asunto(s)
Carbolinas/química , Carbolinas/farmacología , Receptores de Somatostatina/antagonistas & inhibidores , Animales , Carbolinas/síntesis química , Perros , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Estructura Molecular , Ratas , Relación Estructura-Actividad
3.
Bioorg Med Chem Lett ; 25(19): 4143-7, 2015 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-26303893

RESUMEN

A novel, potent series of glucagon receptor antagonists (GRAs) was discovered. These indazole- and indole-based compounds were designed on an earlier pyrazole-based GRA lead MK-0893. Structure-activity relationship (SAR) studies were focused on the C3 and C6 positions of the indazole core, as well as the benzylic position on the N-1 of indazole. Multiple potent GRAs were identified with excellent in vitro profiles and good pharmacokinetics in rat. Among them, GRA 16d was found to be orally active in blunting glucagon induced glucose excursion in an acute glucagon challenge model in glucagon receptor humanized (hGCGR) mice at 1, 3 and 10mg/kg (mpk), and significantly lowered acute glucose levels in hGCGR ob/ob mice at 3 mpk dose.


Asunto(s)
Indazoles/química , Indazoles/farmacología , Indoles/química , Indoles/farmacología , Receptores de Glucagón/antagonistas & inhibidores , Animales , Células CHO , Cricetulus , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Ratones Obesos , Estructura Molecular , Ratas , Relación Estructura-Actividad
4.
Bioorg Med Chem Lett ; 25(17): 3520-5, 2015 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-26199120

RESUMEN

We report SAR studies on a novel non-peptidic somatostatin receptor 3 (SSTR3) agonist lead series derived from (4-phenyl-1H-imidazol-2-yl)methanamine. This effort led to the discovery of a highly potent low molecular weight SSTR3 agonist 5c (EC50=5.2 nM, MW=359). The results from molecular overlays of 5c onto the L-129 structure indicate good alignment, and two main differences of the proposed overlays of the antagonist MK-4256 onto the conformation of 5c lead to inversion of antagonism to agonism.


Asunto(s)
Metilaminas/química , Receptores de Somatostatina/química , Descubrimiento de Drogas , Humanos , Relación Estructura-Actividad
5.
Am J Physiol Endocrinol Metab ; 303(2): E265-71, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22621866

RESUMEN

Glucagon-like peptide-1 (GLP-1) and oxyntomodulin (OXM) are peptide hormones secreted postprandially from the gut that stimulate insulin secretion in a glucose-dependent manner. OXM activates both the GLP-1 receptor (GLP1R) and the glucagon receptor (GCGR). It has been suggested that OXM acutely modulates glucose metabolism solely through GLP1R agonism. Because OXM activates the GLP1R with lower affinity than GLP-1, we generated a peptide analog (Q→E, OXMQ3E) that does not exhibit glucagon receptor agonist activity but retains the same affinity as OXM for GLP1R. We compared the effects of OXM and OXMQ3E in a glucose tolerance test and, to better characterize the effect on glucose metabolism, we performed controlled infusions of OXM or OXMQ3E during a hyperglycemic clamp performed in wild-type, Glp1r(-/-), and Gcgr(-/-) mice. Our findings show that OXM, but not OXMQ3E, activates the GCGR in vivo. Second, OXM and OXMQ3E improve glucose tolerance following an acute glucose challenge and during a hyperglycemic clamp in mice. Finally, OXM infusion during a glucose clamp reduces the glucose infusion rate (GIR) despite a simultaneous increase in insulin levels in Glp1r(-/-) mice, whereas OXM and OXMQ3E increase GIR to a similar extent in Gcgr(-/-) mice. In conclusion, activation of the GCGR seems to partially attenuate the acute beneficial effects on glucose and contributes to the insulinotropic action of oxyntomodulin.


Asunto(s)
Péptido 1 Similar al Glucagón/farmacología , Glucosa/metabolismo , Oxintomodulina/farmacología , Animales , Glucemia/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Insulina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Glucagón/genética , Receptores de Glucagón/metabolismo
6.
Bioorg Med Chem Lett ; 21(9): 2665-9, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21273063

RESUMEN

Screening of the Merck sample collection identified compound 1 as a weakly potent GPR119 agonist (hEC(50)=3600 nM). Dual termini optimization of 1 led to compound 36 having improved potency, selectivity, and formulation profile, however, modest physical properties (PP) hindered its utility. Design of a new core containing a cyclopropyl restriction yielded further PP improvements and when combined with the termini SAR optimizations yielded a potent and highly selective agonist suitable for further preclinical development (58).


Asunto(s)
Diabetes Mellitus Tipo 2 , Diseño de Fármacos , Receptores Acoplados a Proteínas G/agonistas , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Éteres Cíclicos/síntesis química , Éteres Cíclicos/química , Humanos , Ratones , Estructura Molecular , Estereoisomerismo , Relación Estructura-Actividad
7.
Bioorg Med Chem Lett ; 20(7): 2354-8, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20188553

RESUMEN

A new class of potent NK(1) receptor antagonists with a tetrahydroindolizinone core has been identified. This series of compounds demonstrated improved functional activities as compared to previously identified 5,5-fused pyrrolidine lead structures. SAR at the 7-position of the tetrahydroindolizinone core is discussed in detail. A number of compounds displayed high NK(1) receptor occupancy at both 1 h and 24 h in a gerbil foot tapping model. Compound 40 has high NK(1) binding affinity, good selectivity for other NK receptors and promising in vivo properties. It also has clean P(450) inhibition and hPXR induction profiles.


Asunto(s)
Indolizinas/química , Indolizinas/farmacología , Antagonistas del Receptor de Neuroquinina-1 , Receptores de Neuroquinina-1/metabolismo , Animales , Gerbillinae , Humanos , Indolizinas/farmacocinética , Relación Estructura-Actividad
8.
Bioorg Med Chem Lett ; 20(19): 5925-32, 2010 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-20729082

RESUMEN

Previously, we had disclosed a novel class of hNK(1) antagonists based on the 5,5-fused pyrrolidine core. These compounds displayed subnanomolar hNK(1) affinity along with good efficacy in a gerbil foot-tapping (GFT) model, but unfortunately they had low to moderate functional antagonist (IP-1) activity. To elaborate on the SAR of this class of hNK(1) compounds and to improve functional activity, we have designed and synthesized a new class of hNK(1) antagonist with a third fused ring. Compared to the 5,5-fused pyrrolidine class, these 5,5,5-fused tricyclic hNK(1) antagonists maintain subnanomolar hNK(1) binding affinity with highly improved functional IP-1 activity (<10% SP remaining). A fused tricyclic methyl, hydroxyl geminally substituted pyrrolizinone (compound 20) had excellent functional IP (<2% SP remaining), hNK(1) binding affinity, off-target selectivity, pharmacokinetic profile and in vivo activity. Complete inhibition of agonist activity was observed at both 0 and 24h in the gerbil foot-tapping model with an ID(50) of 0.02 mpk at both 0 and 24h, respectively.


Asunto(s)
Antidepresivos Tricíclicos/química , Antagonistas del Receptor de Neuroquinina-1 , Pirrolidinas/química , Animales , Antidepresivos Tricíclicos/síntesis química , Antidepresivos Tricíclicos/farmacocinética , Perros , Humanos , Macaca mulatta , Microsomas/metabolismo , Ratas , Receptores de Neuroquinina-1/metabolismo , Relación Estructura-Actividad
9.
Bioorg Med Chem Lett ; 20(6): 2007-12, 2010 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-20153964

RESUMEN

Previous work on human NK(1) (hNK(1)) antagonists in which the core of the structure is a 5,5-fused pyrrolizinone has been disclosed. The structural-activity-relationship studies on simple alpha- and beta-substituted compounds of this series provided several potent and bioavailable hNK(1) antagonists that displayed excellent brain penetration as observed by their good efficacy in the gerbil foot-tapping (GFT) model assay. Several of these compounds exhibited 100% inhibition of the foot-tapping response at 0.1 and 24h with ID(50)'s of less than 1 mpk. One particular alpha-substituted compound (2b) had an excellent pharmacokinetic profile across preclinical species with reasonable in vivo functional activity and minimal ancillary activity.


Asunto(s)
Compuestos Bicíclicos con Puentes/farmacología , Antagonistas del Receptor de Neuroquinina-1 , Pirroles/farmacología , Administración Oral , Animales , Disponibilidad Biológica , Compuestos Bicíclicos con Puentes/administración & dosificación , Compuestos Bicíclicos con Puentes/farmacocinética , Humanos , Pirroles/administración & dosificación , Pirroles/farmacocinética
10.
J Neurochem ; 106(6): 2476-88, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18673452

RESUMEN

It has been shown that anxiety and stress responses are modulated by substance P (SP) released within the amygdala. However, there is an important gap in our knowledge concerning the mechanisms regulating extracellular SP in this brain region. To study a possible self-regulating role of SP, we used a selective neurokinin-1 (NK1) receptor antagonist to investigate whether blockade of NK1 receptors results in altered basal and/or stress-evoked SP release in the medial amygdala (MeA), a critical brain area for a functional involvement of SP transmission in enhanced anxiety responses induced by stressor exposure. In vitro binding and functional receptor assays revealed that L-822429 represents a potent and selective rat NK1 receptor antagonist. Intra-amygdaloid administration of L-822429 via inverse microdialysis enhanced basal, but attenuated swim stress-induced SP release, while the low-affinity enantiomer of L-822429 had no effect. Using light and electron microscopy, synaptic contacts between SP-containing fibres and dendrites expressing NK1 receptors was demonstrated in the medial amygdala. Our findings suggest self-regulatory capacity of SP-mediated neurotransmission that differs in the effect on basal and stress-induced release of SP. Under basal conditions endogenous SP can serve as a signal that tonically inhibits its own release via a NK1 receptor-mediated negative feedback action, while under stress conditions SP release is further facilitated by activation of NK1 receptors, likely leading to high local levels of SP and activation of receptors to which SP binds with lower affinity.


Asunto(s)
Amígdala del Cerebelo/metabolismo , Antagonistas del Receptor de Neuroquinina-1 , Piperidinas/farmacología , Receptores de Neuroquinina-1/metabolismo , Estrés Psicológico/metabolismo , Sustancia P/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Animales , Sitios de Unión/efectos de los fármacos , Sitios de Unión/fisiología , Células CHO , Cricetinae , Cricetulus , Retroalimentación/efectos de los fármacos , Retroalimentación/fisiología , Ligandos , Masculino , Terminales Presinápticos/efectos de los fármacos , Terminales Presinápticos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Neuroquinina-1/agonistas , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
11.
Bioorg Med Chem ; 16(5): 2156-70, 2008 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18248994

RESUMEN

Previous work on human NK(1) antagonists in which the core of the structure is a substituted pyrrolidine has been disclosed. These compounds showed good binding affinity and functional IP activity, however, many did not exhibit the necessary brain penetration for good in vivo activity. The discovery and preparation of a novel 5,5-fused pyrrolidine core is presented in this paper. This scaffold maintains the excellent binding affinity and functional IP activity of the previously reported compounds, but also exhibits excellent brain penetration as observed in a gerbil foot-tapping assay. The determination of the core structural stereochemistry, which eventually led to the final synthesis of a single active diastereomer, is described.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/síntesis química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Antagonistas del Receptor de Neuroquinina-1 , Pirroles/síntesis química , Pirroles/farmacología , Receptores de Neuroquinina-1/metabolismo , Amidas/química , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Epoxi/química , Humanos , Hidroxilación , Metilación , Estructura Molecular , Pirroles/química , Estereoisomerismo , Urea/química
12.
ACS Med Chem Lett ; 6(8): 936-41, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26288697

RESUMEN

We report herein the design and synthesis of a series of potent and selective GPR119 agonists. Our objective was to develop a GPR119 agonist with properties that were suitable for fixed-dose combination with a DPP4 inhibitor. Starting from a phenoxy analogue (1), medicinal chemistry efforts directed toward reducing half-life and increasing solubility led to the synthesis of a series of benzyloxy analogues. Compound 28 was chosen for further profiling because of its favorable physicochemical properties and excellent GPR119 potency across species. This compound exhibited a clean off-target profile in counterscreens and good in vivo efficacy in mouse oGTT.

13.
ACS Med Chem Lett ; 6(5): 513-7, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-26005524

RESUMEN

The imidazolyl-tetrahydro-ß-carboline class of sstr3 antagonists have demonstrated efficacy in a murine model of glucose excursion and may have potential as a treatment for type 2 diabetes. The first candidate in this class caused unacceptable QTc interval prolongation in oral, telemetrized cardiovascular (CV) dogs. Herein, we describe our efforts to identify an acceptable candidate without CV effects. These efforts resulted in the identification of (1R,3R)-3-(4-(5-fluoropyridin-2-yl)-1H-imidazol-2-yl)-1-(1-ethyl-pyrazol-4-yl)-1-(3-methyl-1,3,4-oxadiazol-3H-2-one-5-yl)-2,3,4,9-tetrahydro-1H-ß-carboline (17e, MK-1421).

14.
Gene ; 296(1-2): 205-12, 2002 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-12383518

RESUMEN

Hemokinin-1 (HK-1) is a novel substance P (SP)-like peptide that is encoded by the preprotachykinin C (PPT-C) gene recently identified in mouse B cells and shown to be a potentially important regulator of B cell development (Nat. Immunol. 1 (2000) 392). We have now isolated and characterized the human and rat orthologs of PPT-C and examined activities of human and mouse HK-1 on the three tachykinin receptors, neurokinin-1-3 (NK1-3). The rat PPT-C polypeptide is highly homologous to mouse PPT-C and contains the same processing sites to generate predicted HK-1. The human PPT-C polypeptide is also homologous to mouse PPT-C, however, it contains two potential monobasic cleavage sites rather than a single dibasic cleavage site at the amino-terminal end of the predicted HK-1 peptide. Thus, human PPT-C has the potential to generate full length predicted HK-1 as well as a truncated version (HK-1(4-11)). Polymerase chain reaction analysis revealed that both human and mouse PPT-C were expressed in a variety of tissues with strong signals detected in the skin of both species and in the mouse brain. Binding and functional analysis indicated that human and mouse HK-1 peptides were nearly identical to SP in their overall activity profile on the three NK receptors with the most potent affinity for the NK1 receptor. The results indicate that PPT-C encodes another high affinity ligand of the NK1 receptor which may play an important role in mediating some of the physiological roles previously assigned to the NK1 receptor.


Asunto(s)
Precursores de Proteínas/genética , Receptores de Taquicininas/metabolismo , Taquicininas/genética , Secuencia de Aminoácidos , Animales , Unión Competitiva/efectos de los fármacos , Células CHO , Cricetinae , Bases de Datos Genéticas , Relación Dosis-Respuesta a Droga , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Ratones , Datos de Secuencia Molecular , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/farmacología , Precursores de Proteínas/química , Precursores de Proteínas/metabolismo , Ensayo de Unión Radioligante , Ratas , Receptores de Neuroquinina-1/metabolismo , Receptores de Neuroquinina-2/metabolismo , Receptores de Neuroquinina-3/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Taquicininas/química , Taquicininas/metabolismo , Taquicininas/farmacología
15.
Neuropharmacology ; 45(2): 231-41, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12842129

RESUMEN

Extensive screening of compound libraries was undertaken to identify compounds with high affinity for the rat NK(1) receptor based on inhibition of [(125)I]-substance P binding. RP67580, SR140333, NKP-608 and GR205171 were selected as compounds of interest, with cloned rat NK(1) receptor binding K(i) values of 0.15-1.9 nM. Despite their high binding affinity, NKP-608 and GR205171 exhibited only a moderate functional antagonism of substance P-induced inositol-1-phosphate accumulation and acidification rate at 1 microM using cloned or native rat NK(1) receptors in vitro. The ability of the compounds to penetrate the CNS was determined by inhibition of NK(1) agonist-induced behaviours in gerbils and rats. GR205171 and NKP-608 potently inhibited GR73632-induced foot drumming in gerbils (ID(50) 0.04 and 0.2 mg/kg i.v., respectively). In contrast, RP67580 and SR140333 were poorly brain penetrant in gerbils (no inhibition at 10 mg/kg i.v.) and were not examined further in vivo. In rats, only high doses of GR205171 (10 or 30 mg/kg s.c.) inhibited NK(1) agonist-induced sniffing and hypertension, whilst NKP-608 (1 or 10 mg/kg i.p.) was without effect. GR205171 (3-30 mg/kg s.c.) caused only partial inhibition of separation-induced vocalisations in rat pups, a response that is known to be NK(1) receptor mediated in other species. These observations demonstrate the shortcomings of currently available NK(1) receptor antagonists for rat psychopharmacology assays.


Asunto(s)
Indoles/farmacología , Antagonistas del Receptor de Neuroquinina-1 , Piperidinas/farmacología , Quinolinas/farmacología , Quinuclidinas/farmacología , Tetrazoles/farmacología , Animales , Células CHO , Cricetinae , Relación Dosis-Respuesta a Droga , Femenino , Gerbillinae , Humanos , Indoles/metabolismo , Isoindoles , Masculino , Piperidinas/metabolismo , Quinolinas/metabolismo , Quinuclidinas/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Neuroquinina-1/metabolismo , Tetrazoles/metabolismo , Células Tumorales Cultivadas
16.
J Med Chem ; 46(10): 1858-69, 2003 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-12723949

RESUMEN

In our continuing program exploring glucose-based peptidomimetics of somatostatin (SRIF-14), we sought to improve the water solubility of our glycosides. This led to insights into the nature of the ligand binding sites at the SRIF receptor. Replacement of the C4 benzyl substituent in glucoside (+)-2 with pyridinylmethyl or pyrazin-2-ylmethyl congeners increased water solubility and enhanced affinity for the human SRIF subtype receptor 4 (sst4). We attribute this effect to hydrogen bond formation. The pyridin-3-ylmethyl substituent at C4, when combined with the imidazol-4-ylmethyl group at C2, generated (-)-19, which has the highest affinity of a glucose-based peptidomimetic at a human SRIF receptor to date (K(i) 53 +/- 23 nM, n = 6 at sst4). The C4 heterocyclic congeners of glucosides bearing a 1-methoxy substituent rather than an indole side chain at the anomeric carbon, such as (+)-16, also provided information about the Trp(8) binding pocket. We correlated the SARs at both the C4 and the Trp(8) binding pockets with calculations of the electrostatic potentials of the diverse C4 aromatic substituents using Spartan 3-21G(*) MO analysis. These calculations provide an approximate analysis of a molecule's ability to interact within a receptor binding site. Our binding studies show that benzene and indole rings, but not pyridinylmethyl nor pyrazin-2-ylmethyl rings, can bind the hydrophobic Trp(8) binding pocket of sst4. The Spartan 3-21G(*) MO analysis reveals significant negative electrostatic potential in the region of the pi-clouds for the benzene and indole rings but not for the pyridinylmethyl or pyrazin-2-ylmethyl congeners. Our data further demonstrate that the replacement of benzene or indole side chains by heterocyclic aromatic rings typified by pyridine and pyrazine not only enhances water solubility and hydrogen bonding capacity as expected, but can also profoundly diminish the ability of the pi-cloud of the aromatic substituent to interact with side chains of an aromatic binding pocket such as that for Trp(8) of SRIF-14. Conversely, these calculations accommodate the experimental findings that pyrazin-2-ylmethyl and pyridinylmethyl substituents at C4- of C1-indole-substituted glycosides afford higher affinities at sst4 than the C4-benzyl group of (+)-2. This result is consistent with the high electron density in the plane of the heterocycle depicted in Figure 6 which can accept hydrogen bonds from the C4 binding pocket of the receptor. Unexpectedly, we found that the 2-fluoropyridin-5-ylmethyl analogue (+)-14 more closely resembles the binding affinity of (+)-8 than that of (+)-2, thus suggesting that (+)-14 represents a rare example of a carbon linked fluorine atom acting as a hydrogen bond acceptor. We attribute this result to the ability of the proton to bind the nitrogen and fluorine atoms simultaneously in a bifurcated arrangement. At the NK1 receptor of substance P (SP), the free hydroxyl at C4 optimizes affinity.


Asunto(s)
Glicósidos/química , Imidazoles/química , Pirazinas/química , Piridinas/química , Receptores de Somatostatina/química , Sitios de Unión , Humanos , Enlace de Hidrógeno , Hidrólisis , Imidazoles/síntesis química , Ligandos , Proteínas de la Membrana , Modelos Moleculares , Imitación Molecular , Péptidos/química , Pirazinas/síntesis química , Piridinas/síntesis química , Teoría Cuántica , Ensayo de Unión Radioligante , Receptores de Neuroquinina-1/química , Solubilidad , Electricidad Estática , Relación Estructura-Actividad
17.
ACS Med Chem Lett ; 5(6): 690-5, 2014 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-24944745

RESUMEN

A novel class of small-molecule, highly potent, and subtype-selective somatostatin SST3 agonists was discovered through modification of a SST3 antagonist. As an example, (1R,2S)-9 demonstrated not only potent in vitro SST3 agonist activity but also in vivo SST3 agonist activity in a mouse oral glucose tolerance test (OGTT). These agonists may be useful reagents for studying the physiological roles of the SST3 receptor and may potentially be useful as therapeutic agents.

18.
ACS Med Chem Lett ; 5(7): 748-53, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-25050159

RESUMEN

Antagonism of somatostatin subtype receptor 3 (sstr3) has emerged as a potential treatment of Type 2 diabetes. Unfortunately, the development of our first preclinical candidate, MK-4256, was discontinued due to a dose-dependent QTc (QT interval corrected for heart rate) prolongation observed in a conscious cardiovascular (CV) dog model. As the fate of the entire program rested on resolving this issue, it was imperative to determine whether the observed QTc prolongation was associated with hERG channel (the protein encoded by the human Ether-à-go-go-Related Gene) binding or was mechanism-based as a result of antagonizing sstr3. We investigated a structural series containing carboxylic acids to reduce the putative hERG off-target activity. A key tool compound, 3A, was identified from this SAR effort. As a potent sstr3 antagonist, 3A was shown to reduce glucose excursion in a mouse oGTT assay. Consistent with its minimal hERG activity from in vitro assays, 3A elicited little to no effect in an anesthetized, vagus-intact CV dog model at high plasma drug levels. These results afforded the critical conclusion that sstr3 antagonism is not responsible for the QTc effects and therefore cleared a path for the program to progress.

19.
J Med Chem ; 56(14): 5940-8, 2013 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-23808489

RESUMEN

Hydroisoindoline 2 has been previously identified as a potent, brain-penetrant NK1 receptor antagonist with a long duration of action and improved profile of CYP3A4 inhibition and induction compared to aprepitant. However, compound 2 is predicted, based on data in preclinical species, to have a human half-life longer than 40 h and likely to have drug-drug-interactions (DDI), as 2 is a victim of CYP3A4 inhibition caused by its exclusive clearance pathway via CYP3A4 oxidation in humans. We now report 2-[(3aR,4R,5S,7aS)-5-{(1S)-1-[3,5-bis(trifluoromethyl)phenyl]-2-hydroxyethoxy}-4-(2-methylphenyl)octahydro-2H-isoindol-2-yl]-1,3-oxazol-4(5H)-one (3) as a next generation NK1 antagonist that possesses an additional clearance pathway through glucuronidation in addition to that via CYP3A4 oxidation. Compound 3 has a much lower propensity for drug-drug interactions and a reduced estimated human half-life consistent with once daily dosing. In preclinical species, compound 3 has demonstrated potency, brain penetration, and a safety profile similar to 2, as well as excellent pharmacokinetics.


Asunto(s)
Isoindoles/síntesis química , Antagonistas del Receptor de Neuroquinina-1/síntesis química , Oxazoles/síntesis química , Citocromo P-450 CYP3A , Inhibidores del Citocromo P-450 CYP3A , Interacciones Farmacológicas , Glucurónidos/metabolismo , Humanos , Isoindoles/química , Isoindoles/farmacocinética , Isoindoles/farmacología , Tasa de Depuración Metabólica , Antagonistas del Receptor de Neuroquinina-1/química , Antagonistas del Receptor de Neuroquinina-1/farmacocinética , Antagonistas del Receptor de Neuroquinina-1/farmacología , Oxazoles/química , Oxazoles/farmacocinética , Oxazoles/farmacología , Fragmentos de Péptidos/farmacología , Sustancia P/análogos & derivados , Sustancia P/farmacología
20.
Obesity (Silver Spring) ; 20(8): 1566-71, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22421924

RESUMEN

Oxyntomodulin (OXM) is a peptide secreted postprandially from the L-cells of the gut that has a weak affinity for both the glucagon-like peptide-1 receptor (GLP1R) and the glucagon receptor (GCGR). Peripheral administration of OXM in humans and rodents causes weight loss reducing food intake and increasing energy expenditure. It has been suggested that OXM modulates energy intake solely through GLP1R agonism. Because glucagon decreases food intake in rodents and humans, we examined whether activation of the GCGR is involved in the body weight-lowering effects of OXM. We identified an equipotent GLP1R-selective peptide agonist that differs from OXM by only one residue (Q3→E, OXMQ3E), but has no significant GCGR agonist activity in vitro and ~100-fold reduced ability to stimulate liver glycogenolysis. Chronic treatment of obese mice with OXM and OXMQ3E demonstrated that OXM exhibits superior weight loss and lipid-lowering efficacy, and antihyperglycemic activity that is comparable to the corresponding GLP1R-selective agonist. Studies in Glp1r(-/-) mice and coadministration of OXM and a GCGR antagonist revealed that the antiobesity effect of OXM requires activation of both GLP1R and GCGR. Our data provide new insight into the mechanism of action of OXM and suggest that activation of GCGR is involved in the body weight-lowering action of OXM.


Asunto(s)
Fármacos Antiobesidad/farmacología , Ingestión de Energía/fisiología , Glucagón/metabolismo , Obesidad/metabolismo , Oxintomodulina/metabolismo , Receptores de Glucagón/agonistas , Pérdida de Peso/efectos de los fármacos , Animales , Ingestión de Energía/efectos de los fármacos , Receptor del Péptido 1 Similar al Glucagón , Glucogenólisis/efectos de los fármacos , Humanos , Hipoglucemiantes/farmacología , Hipolipemiantes/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Obesos , Obesidad/tratamiento farmacológico , Oxintomodulina/farmacología , Receptores de Glucagón/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA