Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 43(1): 361-374, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32965604

RESUMEN

Iodine deficiency disorders (IDD) in sub-Saharan African countries are related to low dietary I intake and generally combatted through salt iodisation. Agronomic biofortification of food crops may be an alternative approach. This study assessed the effectiveness of I biofortification of green vegetables (Brassica napus L and Amaranthus retroflexus L.) grown in tropical soils with contrasting chemistry and fertility. Application rates of 0, 5 and 10 kg ha-1 I applied to foliage or soil were assessed. Leaves were harvested fortnightly for ~ 2 months after I application before a second crop was grown to assess the availability of residual soil I. A separate experiment was used to investigate storage of I within the plants. Iodine concentration and uptake in sequential harvests showed a sharp drop within 28 days of I application in all soil types for all I application levels and methods. This rapid decline likely reflects I fixation in the soil. Iodine biofortification increased I uptake and concentration in the vegetables to a level useful for increasing dietary I intake and could be a feasible way to reduce IDD in tropical regions. However, biofortification of green vegetables which are subject to multiple harvests requires repeated I applications.


Asunto(s)
Fertilizantes/análisis , Alimentos Fortificados/análisis , Yodo/análisis , Suelo/química , Verduras/química , Biofortificación , Disponibilidad Biológica , Enfermedades Carenciales/prevención & control , Yodo/deficiencia , Hojas de la Planta/clasificación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Verduras/clasificación , Verduras/crecimiento & desarrollo , Verduras/metabolismo
2.
Interface Focus ; 14(4): 20230058, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39129856

RESUMEN

Africa's potential for scientific research is not yet being realized, for various reasons including a lack of researchers in many fields and insufficient funding. Strengthened research capacity through doctoral training programmes in higher education institutes (HEIs) in Africa, to include collaboration with national, regional and international research institutions, can facilitate self-reliant and sustainable research to support socio-economic development. In 2012, the Royal Society and the UK's Department for International Development (now the Foreign, Commonwealth and Development Office) launched the Africa Capacity Building Initiative (ACBI) Doctoral Training Network which aimed to strengthen research capacity and training across sub-Saharan Africa. The ACBI supported 30 core PhD scholarships, all registered/supervised within African HEIs with advisory support from the UK-based institutes. Our 'Soil geochemistry to inform agriculture and health policies' consortium project, which was part of the ACBI doctoral training programme network, was implemented in Malawi, Zambia and Zimbabwe between 2014 and 2020. The aims of our consortium were to explore linkages between soil geochemistry, agriculture and public health for increased crop productivity, nutrition and safety of food systems and support wider training and research activities in soil science. Highlights from our consortium included: (i) the generation of new scientific evidence on linkages between soils, crops and human nutrition; (ii) securing new projects to translate science into policy and practice; and (iii) maintaining sustainable collaborative learning across the consortium. Our consortium delivered high-quality science outputs and secured new research and doctoral training funding from a variety of sources to ensure the continuation of research and training activities. For example, follow-on Global Challenges Research Funded Translation Award provided a strong evidence base on the prevalence of deficiencies in children under 5 years of age and women of reproductive age in Zimbabwe. This new evidence will contribute towards the design and implementation of a nationally representative micronutrient survey as an integral part of the Zimbabwe Demographic and Health Surveys conducted by the Ministry of Health and Child Care. The award also generated new evidence and a road map for creating quality innovative doctorates through a doctoral training landscape activity led by the Zimbabwe Council for Higher Education. Although our project and the wider ACBI has contributed to increasing the self-reliance and sustainability of research within the region, many challenges remain and ongoing investment is required.

3.
Proc Nutr Soc ; : 1-11, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32264979

RESUMEN

Selenium (Se) is an essential element for human health. However, our knowledge of the prevalence of Se deficiency is less than for other micronutrients of public health concern such as iodine, iron and zinc, especially in sub-Saharan Africa (SSA). Studies of food systems in SSA, in particular in Malawi, have revealed that human Se deficiency risks are widespread and influenced strongly by geography. Direct evidence of Se deficiency risks includes nationally representative data of Se concentrations in blood plasma and urine as population biomarkers of Se status. Long-range geospatial variation in Se deficiency risks has been linked to soil characteristics and their effects on the Se concentration of food crops. Selenium deficiency risks are also linked to socio-economic status including access to animal source foods. This review highlights the need for geospatially-resolved data on the movement of Se and other micronutrients in food systems which span agriculture-nutrition-health disciplinary domains (defined as a GeoNutrition approach). Given that similar drivers of deficiency risks for Se, and other micronutrients, are likely to occur in other countries in SSA and elsewhere, micronutrient surveillance programmes should be designed accordingly.

4.
Sci Rep ; 5: 15251, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26503697

RESUMEN

The aim of this study was to characterise nutritional-I status in Malawi. Dietary-I intakes were assessed using new datasets of crop, fish, salt and water-I concentrations, while I status was assessed for 60 women living on each of calcareous and non-calcareous soils as defined by urinary iodine concentration (UIC). Iodine concentration in staple foods was low, with median concentrations of 0.01 mg kg(-1) in maize grain, 0.008 mg kg(-1) in roots and tubers, but 0.155 mg kg(-1) in leafy vegetables. Freshwater fish is a good source of dietary-I with a median concentration of 0.51 mg kg(-1). Mean Malawian dietary-Iodine intake from food, excluding salt, was just 7.8 µg d(-1) compared to an adult requirement of 150 µg d(-1). Despite low dietary-I intake from food, median UICs were 203 µg L(-1) with only 12% defined as I deficient whilst 21% exhibited excessive I intake. Iodised salt is likely to be the main source of dietary I intake in Malawi; thus, I nutrition mainly depends on the usage and concentration of I in iodised salt. Drinking water could be a significant source of I in some areas, providing up to 108 µg d(-1) based on consumption of 2 L d(-1).


Asunto(s)
Dieta , Yodo/administración & dosificación , Humanos , Malaui
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA