Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 12(7): e1005763, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27467575

RESUMEN

A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts.


Asunto(s)
Antimaláricos/uso terapéutico , Conjuntos de Datos como Asunto , Descubrimiento de Drogas/métodos , Malaria/tratamiento farmacológico , Enfermedades Desatendidas/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Humanos , Bibliotecas de Moléculas Pequeñas
2.
FEBS Lett ; 588(21): 4018-25, 2014 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-25263705

RESUMEN

Lysine deacetylases (KDACs) inhibitors may have therapeutic value in anti-malarial combination therapies with artemisinin. To evaluate connections between KDACs and artemisinin, Saccharomyces cerevisiae deletion mutants in KDAC genes were assayed. Deletion of RPD3, but not other KDAC genes, resulted in strong sensitivity to artemisinin, which was also observed in sit4Δ mutants with impaired endoplasmic reticulum (ER) to Golgi protein trafficking. Decreased accumulation of the transporters Pdr5p, Fur4p, and Tat2p was observed in rpd3Δ and sit4Δ cells. The unfolded protein response is induced in rpd3Δ cells consistent with retention of proteins in the ER. Disruption of protein trafficking appears to sensitize cells to artemisinin and targeting these pathways may be useful as part of artemisinin based anti-malarial therapy.


Asunto(s)
Artemisininas/farmacología , Eliminación de Gen , Histona Desacetilasas/deficiencia , Histona Desacetilasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Farmacorresistencia Fúngica/efectos de los fármacos , Farmacorresistencia Fúngica/genética , Transporte de Proteínas/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiología , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/genética , Respuesta de Proteína Desplegada/efectos de los fármacos , Respuesta de Proteína Desplegada/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA