Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 27-68, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28498720

RESUMEN

Peptides and proteins have been found to possess an inherent tendency to convert from their native functional states into intractable amyloid aggregates. This phenomenon is associated with a range of increasingly common human disorders, including Alzheimer and Parkinson diseases, type II diabetes, and a number of systemic amyloidoses. In this review, we describe this field of science with particular reference to the advances that have been made over the last decade in our understanding of its fundamental nature and consequences. We list the proteins that are known to be deposited as amyloid or other types of aggregates in human tissues and the disorders with which they are associated, as well as the proteins that exploit the amyloid motif to play specific functional roles in humans. In addition, we summarize the genetic factors that have provided insight into the mechanisms of disease onset. We describe recent advances in our knowledge of the structures of amyloid fibrils and their oligomeric precursors and of the mechanisms by which they are formed and proliferate to generate cellular dysfunction. We show evidence that a complex proteostasis network actively combats protein aggregation and that such an efficient system can fail in some circumstances and give rise to disease. Finally, we anticipate the development of novel therapeutic strategies with which to prevent or treat these highly debilitating and currently incurable conditions.


Asunto(s)
Enfermedad de Alzheimer/historia , Amiloide/química , Amiloidosis/historia , Diabetes Mellitus Tipo 2/historia , Enfermedad de Parkinson/historia , Deficiencias en la Proteostasis/historia , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Amiloide/genética , Amiloide/metabolismo , Amiloidosis/tratamiento farmacológico , Amiloidosis/metabolismo , Amiloidosis/patología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Drogas en Investigación , Regulación de la Expresión Génica , Historia del Siglo XXI , Humanos , Amiloidosis de Cadenas Ligeras de las Inmunoglobulinas , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Terapia Molecular Dirigida , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Agregación Patológica de Proteínas/historia , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Agregación Patológica de Proteínas/prevención & control , Conformación Proteica , Pliegue de Proteína , Deficiencias en la Proteostasis/tratamiento farmacológico , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/patología , Deficiencias en la Proteostasis/prevención & control
2.
J Am Chem Soc ; 146(15): 10537-10549, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38567991

RESUMEN

The aberrant aggregation of α-synuclein (αS) into amyloid fibrils is associated with a range of highly debilitating neurodegenerative conditions, including Parkinson's disease. Although the structural properties of mature amyloids of αS are currently understood, the nature of transient protofilaments and fibrils that appear during αS aggregation remains elusive. Using solid-state nuclear magnetic resonance (ssNMR), cryogenic electron microscopy (cryo-EM), and biophysical methods, we here characterized intermediate amyloid fibrils of αS forming during the aggregation from liquid-like spherical condensates to mature amyloids adopting the structure of pathologically observed aggregates. These transient amyloid intermediates, which induce significant levels of cytotoxicity when incubated with neuronal cells, were found to be stabilized by a small core in an antiparallel ß-sheet conformation, with a disordered N-terminal region of the protein remaining available to mediate membrane binding. In contrast, mature amyloids that subsequently appear during the aggregation showed different structural and biological properties, including low levels of cytotoxicity, a rearranged structured core embedding also the N-terminal region, and a reduced propensity to interact with the membrane. The characterization of these two fibrillar forms of αS, and the use of antibodies and designed mutants, enabled us to clarify the role of critical structural elements endowing intermediate amyloid species with the ability to interact with membranes and induce cytotoxicity.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Humanos , alfa-Sinucleína/genética , alfa-Sinucleína/toxicidad , alfa-Sinucleína/química , Enfermedad de Parkinson/metabolismo , Amiloide/química , Conformación Proteica en Lámina beta
3.
Acc Chem Res ; 56(12): 1395-1405, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37071750

RESUMEN

The aberrant misfolding and aggregation of peptides and proteins into amyloid aggregates occurs in over 50 largely incurable protein misfolding diseases. These pathologies include Alzheimer's and Parkinson's diseases, which are global medical emergencies owing to their prevalence in increasingly aging populations worldwide. Although the presence of mature amyloid aggregates is a hallmark of such neurodegenerative diseases, misfolded protein oligomers are increasingly recognized as of central importance in the pathogenesis of many of these maladies. These oligomers are small, diffusible species that can form as intermediates in the amyloid fibril formation process or be released by mature fibrils after they are formed. They have been closely associated with the induction of neuronal dysfunction and cell death. It has proven rather challenging to study these oligomeric species because of their short lifetimes, low concentrations, extensive structural heterogeneity, and challenges associated with producing stable, homogeneous, and reproducible populations. Despite these difficulties, investigators have developed protocols to produce kinetically, chemically, or structurally stabilized homogeneous populations of protein misfolded oligomers from several amyloidogenic peptides and proteins at experimentally ameneable concentrations. Furthermore, procedures have been established to produce morphologically similar but structurally distinct oligomers from the same protein sequence that are either toxic or nontoxic to cells. These tools offer unique opportunities to identify and investigate the structural determinants of oligomer toxicity by a close comparative inspection of their structures and the mechanisms of action through which they cause cell dysfunction.This Account reviews multidisciplinary results, including from our own groups, obtained by combining chemistry, physics, biochemistry, cell biology, and animal models for pairs of toxic and nontoxic oligomers. We describe oligomers comprised of the amyloid-ß peptide, which underlie Alzheimer's disease, and α-synuclein, which are associated with Parkinson's disease and other related neurodegenerative pathologies, collectively known as synucleinopathies. Furthermore, we also discuss oligomers formed by the 91-residue N-terminal domain of [NiFe]-hydrogenase maturation factor from E. coli, which we use as a model non-disease-related protein, and by an amyloid stretch of Sup35 prion protein from yeast. These oligomeric pairs have become highly useful experimental tools for studying the molecular determinants of toxicity characteristic of protein misfolding diseases. Key properties have been identified that differentiate toxic from nontoxic oligomers in their ability to induce cellular dysfunction. These characteristics include solvent-exposed hydrophobic regions, interactions with membranes, insertion into lipid bilayers, and disruption of plasma membrane integrity. By using these properties, it has been possible to rationalize in model systems the responses to pairs of toxic and nontoxic oligomers. Collectively, these studies provide guidance for the development of efficacious therapeutic strategies to target rationally the cytotoxicity of misfolded protein oligomers in neurodegenerative conditions.


Asunto(s)
Enfermedad de Alzheimer , Deficiencias en la Proteostasis , Animales , Escherichia coli/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/metabolismo , Amiloide/química
4.
Bioessays ; 44(11): e2200086, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36104212

RESUMEN

Amyloid fibril formation plays a central role in the pathogenesis of a number of neurodegenerative diseases, including Alzheimer and Parkinson diseases. Transient prefibrillar oligomers forming during the aggregation process, exhibiting a small size and a large hydrophobic surface, can aberrantly interact with a number of molecular targets on neurons, including the lipid bilayer of plasma membranes, resulting in a fatal outcome for the cells. By contrast, the mature fibrils, despite presenting generally a high hydrophobic surface, are endowed with a low diffusion rate and poorly penetrate the interior of the lipid bilayer. However, increasing evidence shows that both intracellular α-synuclein fibrils, as well and as extracellular amyloid-ß and ß2-microglobulin fibrils, can release oligomers over time that quickly diffuse to reach the membrane of the neighboring cells. The persistent leakage of harmful oligomers from fibrils triggers an ongoing cascade of events resulting in a sustained injury to neurons and glia and also provides aggregates with the ability to cross biological membranes and diffuse between cells or cellular compartments.


Asunto(s)
Amiloide , Enfermedad de Parkinson , Humanos , Amiloide/química , Amiloide/metabolismo , alfa-Sinucleína/metabolismo , Membrana Dobles de Lípidos , Péptidos beta-Amiloides/metabolismo , Enfermedad de Parkinson/metabolismo
5.
FASEB J ; 36(12): e22655, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36421008

RESUMEN

Trodusquemine is an aminosterol with a variety of biological and pharmacological functions, such as acting as an antimicrobial, stimulating body weight loss and interfering with the toxicity of proteins involved in the development of Alzheimer's and Parkinson's diseases. The mechanisms of interaction of aminosterols with cells are, however, still largely uncharacterized. Here, by using fluorescently labeled trodusquemine (TRO-A594 and TRO-ATTO565), we show that trodusquemine binds initially to the plasma membrane of living cells, that the binding affinity is dependent on cholesterol, and that trodusquemine is then internalized and mainly targeted to lysosomes after internalization. We also found that TRO-A594 is able to strongly and selectively bind to myelinated fibers in fixed mouse brain slices, and that it is a marker compatible with tissue clearing and light-sheet fluorescence microscopy or expansion microscopy. In conclusion, this work contributes to further characterize the biology of aminosterols and provides a new tool for nerve labeling suitable for the most advanced microscopy techniques.


Asunto(s)
Colestanos , Animales , Ratones , Colestanos/farmacología , Espermina/farmacología , Microscopía Fluorescente/métodos , Colesterol
6.
Cell Mol Life Sci ; 79(9): 500, 2022 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-36030306

RESUMEN

Alzheimer's disease is characterized by the accumulation in the brain of the amyloid ß (Aß) peptide in the form of senile plaques. According to the amyloid hypothesis, the aggregation process of Aß also generates smaller soluble misfolded oligomers that contribute to disease progression. One of the mechanisms of Aß oligomer cytotoxicity is the aberrant interaction of these species with the phospholipid bilayer of cell membranes, with a consequent increase in cytosolic Ca2+ levels, flowing from the extracellular space, and production of reactive oxygen species (ROS). Here we investigated the relationship between the increase in Ca2+ and ROS levels immediately after the exposure to misfolded protein oligomers, asking whether they are simultaneous or instead one precedes the other. Using Aß42-derived diffusible ligands (ADDLs) and type A HypF-N model oligomers (OAs), we followed the kinetics of ROS production and Ca2+ influx in human neuroblastoma SH-SY5Y cells and rat primary cortical neurons in a variety of conditions. In all cases we found a faster increase of intracellular Ca2+ than ROS levels, and a lag phase in the latter process. A Ca2+-deprived cell medium prevented the increase of intracellular Ca2+ ions and abolished ROS production. By contrast, treatment with antioxidant agents prevented ROS formation, did not prevent the initial Ca2+ flux, but allowed the cells to react to the initial calcium dyshomeostasis, restoring later the normal levels of the ions. These results reveal a mechanism in which the entry of Ca2+ causes the production of ROS in cells challenged by aberrant protein oligomers.


Asunto(s)
Enfermedad de Alzheimer , Neuroblastoma , Péptidos beta-Amiloides , Animales , Humanos , Estrés Oxidativo , Ratas , Especies Reactivas de Oxígeno
7.
Nat Prod Rep ; 39(4): 742-753, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-34698757

RESUMEN

Covering: 1993 to 2021 (mainly 2017-2021)Alzheimer's and Parkinson's diseases are neurodegenerative conditions affecting over 50 million people worldwide. Since these disorders are still largely intractable pharmacologically, discovering effective treatments is of great urgency and importance. These conditions are characteristically associated with the aberrant deposition of proteinaceous aggregates in the brain, and with the formation of metastable intermediates known as protein misfolded oligomers that play a central role in their aetiology. In this Highlight article, we review the evidence at the physicochemical, cellular, animal model and clinical levels on how the natural products squalamine and trodusquemine offer promising opportunities for chronic treatments for these progressive conditions by preventing both the formation of neurotoxic oligomers and their interaction with cell membranes.


Asunto(s)
Enfermedad de Alzheimer , Productos Biológicos , Enfermedades Neurodegenerativas , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Productos Biológicos/farmacología , Química Física , Colestanos , Colestanoles , Humanos , Enfermedades Neurodegenerativas/tratamiento farmacológico , Espermina/análogos & derivados
8.
Molecules ; 27(13)2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35807552

RESUMEN

TAR DNA-binding protein 43 (TDP-43) forms intraneuronal cytoplasmic inclusions associated with amyotrophic lateral sclerosis and ubiquitin-positive frontotemporal lobar degeneration. Its N-terminal domain (NTD) can dimerise/oligomerise with the head-to-tail arrangement, which is essential for function but also favours liquid-liquid phase separation and inclusion formation of full-length TDP-43. Using various biophysical approaches, we identified an alternative conformational state of NTD in the presence of Sulfobetaine 3-10 (SB3-10), with higher content of α-helical structure and tryptophan solvent exposure. NMR shows a highly mobile structure, with partially folded regions and ß-sheet content decrease, with a concomitant increase of α-helical structure. It is monomeric and reverts to native oligomeric NTD upon SB3-10 dilution. The equilibrium GdnHCl-induced denaturation shows a cooperative folding and a somewhat lower conformational stability. When the aggregation processes were compared with and without pre-incubation with SB3-10, but at the identical final SB3-10 concentration, a slower aggregation was found in the former case, despite the reversible attainment of the native conformation in both cases. This was attributed to protein monomerization and oligomeric seeds disruption by the conditions promoting the alternative conformation. Overall, the results show a high plasticity of TDP-43 NTD and identify strategies to monomerise TDP-43 NTD for methodological and biomedical applications.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Dimerización , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Cuerpos de Inclusión/metabolismo , Agregado de Proteínas , Conformación Proteica en Lámina beta , Dominios Proteicos , Pliegue de Proteína
9.
Immunology ; 164(2): 358-371, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34043816

RESUMEN

Increasing evidence indicates that peripheral immune cells play a prominent role in neurodegeneration connected to protein misfolding, which are associated with formation of aberrant aggregates, including soluble protein misfolded oligomers. The precise links, however, between the physicochemical features of diverse oligomers and their effects on the immune system, particularly on adaptive immunity, remain currently unexplored, due partly to the transient and heterogeneous nature of the oligomers themselves. To overcome these limitations, we took advantage of two stable and well-characterized types of model oligomers (A and B), formed by HypF-N bacterial protein, type B oligomers displaying lower solvent-exposed hydrophobicity. Exposure to oligomers of human peripheral blood mononuclear cells (PBMCs) revealed differential effects, with type B, but not type A, oligomers leading to a reduction in CD4+ cells. Type A oligomers promoted enhanced differentiation towards CD4+ CD25High FoxP3+ Tregs and displayed a higher suppressive effect on lymphocyte proliferation than Tregs treated with oligomers B or untreated cells. Moreover, our results reveal Th1 and Th17 lymphocyte differentiation mediated by type A oligomers and a differential balance of TGF-ß, IL-6, IL-23, IFN-γ and IL-10 mediators. These results indicate that type B oligomers recapitulate some of the biological responses associated with Parkinson's disease in peripheral immunocompetent cells, while type A oligomers resemble responses associated with Alzheimer's disease. We anticipate that further studies characterizing the differential effects of protein misfolded oligomers on the peripheral immune system may lead to the development of blood-based diagnostics, which could report on the type and properties of oligomers present in patients.


Asunto(s)
Leucocitos Mononucleares/metabolismo , Deficiencias en la Proteostasis/metabolismo , Adulto , Linfocitos T CD4-Positivos/metabolismo , Diferenciación Celular/fisiología , Células Cultivadas , Citocinas/metabolismo , Humanos , Activación de Linfocitos/fisiología , Persona de Mediana Edad , Pliegue de Proteína , Linfocitos T Reguladores/metabolismo , Células TH1/metabolismo , Células Th17/metabolismo
10.
J Biol Chem ; 294(5): 1488-1489, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710006

RESUMEN

Novel imaging techniques with ever-increasing resolution are invaluable tools for the study of protein deposition, as they allow the self-assembly of proteins to be directly investigated in living cells. For the first time, the acceleration in Aß42 aggregation induced by the Arctic mutation was monitored in cells, revealing a number of distinct morphologies that form sequentially. This approach will help discriminate the impacts of mutations on amyloid protein processing, Aß aggregation propensity, and other mechanistic outcomes.


Asunto(s)
Péptidos beta-Amiloides/química , Microscopía Confocal/métodos , Fragmentos de Péptidos/química , Multimerización de Proteína , Péptidos beta-Amiloides/ultraestructura , Humanos , Fragmentos de Péptidos/ultraestructura
11.
FASEB J ; 33(10): 10780-10793, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31287959

RESUMEN

The involvement of transactivation response (TAR) DNA-binding protein 43 (TDP-43) in neurodegenerative diseases was revealed in 2006, when it was first reported to be the main component of the intracellular inclusions in patients with amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration. After 12 yr it is not yet possible to purify to a reasonable yield and in a reproducible manner a stable full-length protein, which has limited so far the characterization of its structure, function, molecular interactors, and pathobiology. Using a novel protocol we have achieved the purification of the full-length TDP-43, with both a short pectate lyase B tag and a glutathione S-transferase tag, which consisted in its expression in bacteria, solubilization from inclusion bodies, purification under denaturing conditions, refolding, and a final size exclusion chromatography (SEC) step. Differential scanning fluorimetry was used to find the best buffers and combination of additives to increase both its solubility and its stability. The protein is pure, as determined with electrophoresis, Western blotting, and mass spectrometry; properly refolded, as revealed by circular dichroism and fluorescence spectroscopies; functional, because it binds to DNA and protein partners; and stable to degradation and aggregation in a physiologic solution. Analyses with dynamic light scattering and SEC revealed that the protein is a dimer.-Vivoli Vega, M., Nigro, A., Luti, S., Capitini, C., Fani, G., Gonnelli, L., Boscaro, F., Chiti, F. Isolation and characterization of soluble human full-length TDP-43 associated with neurodegeneration.


Asunto(s)
Proteínas de Unión al ADN/aislamiento & purificación , Enfermedades Neurodegenerativas/metabolismo , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Cromatografía en Gel , Dicroismo Circular , Clonación Molecular , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dispersión Dinámica de Luz , Degeneración Lobar Frontotemporal/genética , Degeneración Lobar Frontotemporal/metabolismo , Humanos , Espectrometría de Masas , Enfermedades Neurodegenerativas/genética , Pliegue de Proteína , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Solubilidad
12.
Biomacromolecules ; 21(3): 1112-1125, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32011129

RESUMEN

Alzheimer's disease is associated with the deposition of the amyloid-ß peptide (Aß) into extracellular senile plaques in the brain. In vitro and in vivo observations have indicated that transthyretin (TTR) acts as an Aß scavenger in the brain, but the mechanism has not been fully resolved. We have monitored the aggregation process of Aß40 by thioflavin T fluorescence, in the presence or absence of different concentrations of preformed seed aggregates of Aß40, of wild-type tetrameric TTR (WT-TTR), and of a variant engineered to be stable as a monomer (M-TTR). Both WT-TTR and M-TTR were found to inhibit specific steps of the process of Aß40 fibril formation, which are primary and secondary nucleations, without affecting the elongation of the resulting fibrils. Moreover, the analysis shows that both WT-TTR and M-TTR bind to Aß40 oligomers formed in the aggregation reaction and inhibit their conversion into the shortest fibrils able to elongate. Using biophysical methods, TTR was found to change some aspects of its overall structure following such interactions with Aß40 oligomers, as well as with oligomers of Aß42, while maintaining its overall topology. Hence, it is likely that the predominant mechanism by which TTR exerts its protective role lies in the binding of TTR to the Aß oligomers and in inhibiting primary and secondary nucleation processes, which limits both the toxicity of Aß oligomers and the ability of the fibrils to proliferate.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Enfermedad de Alzheimer/tratamiento farmacológico , Péptidos beta-Amiloides/toxicidad , Humanos , Sustancias Macromoleculares , Fragmentos de Péptidos , Placa Amiloide , Prealbúmina/genética
13.
Proc Natl Acad Sci U S A ; 114(6): E1009-E1017, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28096355

RESUMEN

The self-assembly of α-synuclein is closely associated with Parkinson's disease and related syndromes. We show that squalamine, a natural product with known anticancer and antiviral activity, dramatically affects α-synuclein aggregation in vitro and in vivo. We elucidate the mechanism of action of squalamine by investigating its interaction with lipid vesicles, which are known to stimulate nucleation, and find that this compound displaces α-synuclein from the surfaces of such vesicles, thereby blocking the first steps in its aggregation process. We also show that squalamine almost completely suppresses the toxicity of α-synuclein oligomers in human neuroblastoma cells by inhibiting their interactions with lipid membranes. We further examine the effects of squalamine in a Caenorhabditis elegans strain overexpressing α-synuclein, observing a dramatic reduction of α-synuclein aggregation and an almost complete elimination of muscle paralysis. These findings suggest that squalamine could be a means of therapeutic intervention in Parkinson's disease and related conditions.


Asunto(s)
Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/prevención & control , alfa-Sinucleína/química , Algoritmos , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Productos Biológicos/química , Productos Biológicos/farmacología , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Línea Celular Tumoral , Colestanoles/química , Colestanoles/farmacología , Humanos , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Estructura Molecular , Neuroblastoma/metabolismo , Neuroblastoma/patología , Paresia/genética , Paresia/metabolismo , Paresia/prevención & control , Enfermedad de Parkinson/metabolismo , Unión Proteica/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
14.
Int J Mol Sci ; 21(17)2020 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872449

RESUMEN

TAR DNA-binding protein 43 (TDP-43) is a 414-residue long nuclear protein whose deposition into intraneuronal insoluble inclusions has been associated with the onset of amyotrophic lateral sclerosis (ALS) and other diseases. This protein is physiologically a homodimer, and dimerization occurs through the N-terminal domain (NTD), with a mechanism on which a full consensus has not yet been reached. Furthermore, it has been proposed that this domain is able to affect the formation of higher molecular weight assemblies. Here, we purified this domain and carried out an unprecedented characterization of its folding/dimerization processes in solution. Exploiting a battery of biophysical approaches, ranging from FRET to folding kinetics, we identified a head-to-tail arrangement of the monomers within the dimer. We found that folding of NTD proceeds through the formation of a number of conformational states and two parallel pathways, while a subset of molecules refold slower, due to proline isomerism. The folded state appears to be inherently prone to form high molecular weight assemblies. Taken together, our results indicate that NTD is inherently plastic and prone to populate different conformations and dimeric/multimeric states, a structural feature that may enable this domain to control the assembly state of TDP-43.


Asunto(s)
Proteínas de Unión al ADN/química , Mutación , Dicroismo Circular , Proteínas de Unión al ADN/genética , Humanos , Cinética , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína
15.
Int J Mol Sci ; 21(19)2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33019683

RESUMEN

Alzheimer's disease (AD) is the most prevalent form of dementia and soluble amyloid ß (Aß) oligomers are thought to play a critical role in AD pathogenesis. Cellular prion protein (PrPC) is a high-affinity receptor for Aß oligomers and mediates some of their toxic effects. The N-terminal region of PrPC can interact with Aß, particularly the region encompassing residues 95-110. In this study, we identified a soluble and unstructured prion-derived peptide (PrP107-120) that is external to this region of the sequence and was found to successfully reduce the mitochondrial impairment, intracellular ROS generation and cytosolic Ca2+ uptake induced by oligomeric Aß42 ADDLs in neuroblastoma SH-SY5Y cells. PrP107-120 was also found to rescue SH-SY5Y cells from Aß42 ADDL internalization. The peptide did not change the structure and aggregation pathway of Aß42 ADDLs, did not show co-localization with Aß42 ADDLs in the cells and showed a partial colocalization with the endogenous cellular PrPC. As a sequence region that is not involved in Aß binding but in PrP self-recognition, the peptide was suggested to protect against the toxicity of Aß42 oligomers by interfering with cellular PrPC and/or activating a signaling that protected the cells. These results strongly suggest that PrP107-120 has therapeutic potential for AD.


Asunto(s)
Péptidos beta-Amiloides/antagonistas & inhibidores , Calcio/metabolismo , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/antagonistas & inhibidores , Péptidos/farmacología , Proteínas PrPC/química , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/toxicidad , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Transporte Iónico , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Modelos Biológicos , Neuronas/metabolismo , Neuronas/patología , Fragmentos de Péptidos/toxicidad , Péptidos/química , Proteínas PrPC/metabolismo , Unión Proteica , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Solubilidad
16.
Int J Mol Sci ; 21(12)2020 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-32630615

RESUMEN

Alzheimer's disease is associated with the aggregation of the amyloid-ß peptide (Aß), resulting in the deposition of amyloid plaques in brain tissue. Recent scrutiny of the mechanisms by which Aß aggregates induce neuronal dysfunction has highlighted the importance of the Aß oligomers of this protein fragment. Because of the transient and heterogeneous nature of these oligomers, however, it has been challenging to investigate the detailed mechanisms by which these species exert cytotoxicity. To address this problem, we demonstrate here the use of rationally designed single-domain antibodies (DesAbs) to characterize the structure-toxicity relationship of Aß oligomers. For this purpose, we use Zn2+-stabilized oligomers of the 40-residue form of Aß (Aß40) as models of brain Aß oligomers and two single-domain antibodies (DesAb18-24 and DesAb34-40), designed to bind to epitopes at residues 18-24 and 34-40 of Aß40, respectively. We found that the DesAbs induce a change in structure of the Zn2+-stabilized Aß40 oligomers, generating a simultaneous increase in their size and solvent-exposed hydrophobicity. We then observed that these increments in both the size and hydrophobicity of the oligomers neutralize each other in terms of their effects on cytotoxicity, as predicted by a recently proposed general structure-toxicity relationship, and observed experimentally. These results illustrate the use of the DesAbs as research tools to investigate the biophysical and cytotoxicity properties of Aß oligomers.


Asunto(s)
Péptidos beta-Amiloides/inmunología , Anticuerpos/inmunología , Anticuerpos/metabolismo , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Formación de Anticuerpos/inmunología , Encéfalo/metabolismo , Diseño de Fármacos , Humanos , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Agregado de Proteínas/fisiología , Ingeniería de Proteínas/métodos , Relación Estructura-Actividad
17.
J Biol Chem ; 293(26): 10303-10313, 2018 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-29760185

RESUMEN

A set of missense mutations in the gene encoding profilin-1 has been linked to the onset of familial forms of ALS (fALS), also known as Lou Gehrig's disease. The pathogenic potential of these mutations is linked to the formation of intracellular inclusions of the mutant proteins and correlates with the mutation-induced destabilization of its native, fully folded state. However, the mechanism by which these mutations promote misfolding and self-assembly is yet unclear. Here, using temperature-jump and stopped-flow kinetic measurements, we show that, during refolding, WT profilin-1 transiently populates a partially folded (PF) state endowed with hydrophobic clusters exposed to the solvent and with no detectable secondary structure. We observed that this conformational state is marginally stable at neutral pH but becomes significantly populated at mildly acidic pH. Interestingly, the fALS-associated mutations did not cause a change in the refolding mechanism of profilin-1, but induced a stabilization of the PF state. In the presence of preformed profilin-1 aggregates, the PF state, unlike the unfolded and folded states, could interact with these aggregates via nonspecific hydrophobic interactions and also increase thioflavin-T fluorescence, revealing its amyloidogenic potential. Moreover, in the variants tested, we found a correlation between conformational stability of PF and aggregation propensity, defining this conformational state as an aggregation-prone folding intermediate. In conclusion, our findings indicate that mutation-induced stabilization of a partially folded state can enhance profilin-1 aggregation and thereby contribute to the pathogenicity of the mutations.


Asunto(s)
Profilinas/química , Profilinas/metabolismo , Agregado de Proteínas , Pliegue de Proteína , Esclerosis Amiotrófica Lateral/genética , Humanos , Concentración de Iones de Hidrógeno , Mutación , Profilinas/genética , Replegamiento Proteico , Estabilidad Proteica
18.
Int J Mol Sci ; 20(15)2019 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-31357627

RESUMEN

Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are progressive and fatal neurodegenerative disorders showing mislocalization and cytosolic accumulation of TDP-43 inclusions in the central nervous system. The decrease in the efficiency of the clearance systems in aging, as well as the presence of genetic mutations of proteins associated with cellular proteostasis in the familial forms of TDP-43 proteinopathies, suggest that a failure of these protein degradation systems is a key factor in the aetiology of TDP-43 associated disorders. Here we show that the internalization of human pre-formed TDP-43 aggregates in the murine neuroblastoma N2a cells promptly resulted in their ubiquitination and hyperphosphorylation by endogenous machineries, mimicking the post-translational modifications observed in patients. Moreover, our data identify mitochondria as the main responsible sites for the alteration of calcium homeostasis induced by TDP-43 aggregates, which, in turn, stimulates an increase in reactive oxygen species and, finally, caspase activation. The inhibition of TDP-43 proteostasis in the presence of selective inhibitors against the proteasome and macroautophagy systems revealed that these two systems are both severely involved in TDP-43 accumulation and have a strong influence on each other in neurodegenerative disorders associated with TDP-43.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas , Proteostasis , Animales , Autofagia , Calcio/metabolismo , Caspasa 3/metabolismo , Supervivencia Celular , Humanos , Mitocondrias/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Neuronas/patología , Fosforilación , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Proteolisis , Especies Reactivas de Oxígeno/metabolismo , Ubiquitinación
19.
Int J Mol Sci ; 20(22)2019 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-31703381

RESUMEN

Deposition of soluble proteins as insoluble amyloid fibrils is associated with a number of pathological states. There is a growing interest in the identification of small molecules that can prevent proteins from undergoing amyloid fibril formation. In the present study, a series of small aromatic compounds with different substitutions of 1,3,5-triphenylbenzene have been synthesized and their possible effects on amyloid fibril formation by hen egg white lysozyme (HEWL), a model protein for amyloid formation, and of their resulting toxicity were examined. The inhibitory effect of the compounds against HEWL amyloid formation was analyzed using thioflavin T and Congo red binding assays, atomic force microscopy, Fourier-transform infrared spectroscopy, and cytotoxicity assays, such as the 3-(4,5-Dimethylthiazol)-2,5-Diphenyltetrazolium Bromide (MTT) reduction assay and caspase-3 activity measurements. We found that all compounds in our screen were efficient inhibitors of HEWL fibril formation and their associated toxicity. We showed that electron-withdrawing substituents such as -F and -NO2 potentiated the inhibitory potential of 1,3,5-triphenylbenzene, whereas electron-donating groups such as -OH, -OCH3, and -CH3 lowered it. These results may ultimately find applications in the development of potential inhibitors against amyloid fibril formation and its biologically adverse effects.


Asunto(s)
Amiloide/química , Proteínas Aviares/química , Derivados del Benceno/química , Muramidasa/química , Agregado de Proteínas , Animales , Línea Celular Tumoral , Pollos , Humanos
20.
Biophys J ; 114(6): 1357-1367, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29590593

RESUMEN

The deposition of fibrillar protein aggregates in human organs is the hallmark of several pathological states, including highly debilitating neurodegenerative disorders and systemic amyloidoses. It is widely accepted that small oligomers arising as intermediates in the aggregation process, released by fibrils, or growing in secondary nucleation steps are the cytotoxic entities in protein-misfolding diseases, notably neurodegenerative conditions. Increasing evidence indicates that cytotoxicity is triggered by the interaction between nanosized protein aggregates and cell membranes, even though little information on the molecular details of such interaction is presently available. In this work, we propose what is, to our knowledge, a new approach, based on the use of single-cell force spectroscopy applied to multifunctional substrates, to study the interaction between protein oligomers, cell membranes, and/or the extracellular matrix. We compared the interaction of single Chinese hamster ovary cells with two types of oligomers (toxic and nontoxic) grown from the N-terminal domain of the Escherichia coli protein HypF. We were able to quantify the affinity between both oligomer type and the cell membrane by measuring the mechanical work needed to detach the cells from the aggregates, and we could discriminate the contributions of the membrane lipid and protein fractions to such affinity. The fundamental role of the ganglioside GM1 in the membrane-oligomers interaction was also highlighted. Finally, we observed that the binding of toxic oligomers to the cell membrane significantly affects the functionality of adhesion molecules such as Arg-Gly-Asp binding integrins, and that this effect requires the presence of the negatively charged sialic acid moiety of GM1.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Adhesión Celular/efectos de los fármacos , Membrana Celular/metabolismo , Multimerización de Proteína , Animales , Proteínas Bacterianas/toxicidad , Células CHO , Membrana Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Cricetulus , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA