Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 175(6): 1507-1519.e16, 2018 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-30415835

RESUMEN

Mammals encode ∼5,000 integral membrane proteins that need to be inserted in a defined topology at the endoplasmic reticulum (ER) membrane by mechanisms that are incompletely understood. Here, we found that efficient biogenesis of ß1-adrenergic receptor (ß1AR) and other G protein-coupled receptors (GPCRs) requires the conserved ER membrane protein complex (EMC). Reconstitution studies of ß1AR biogenesis narrowed the EMC requirement to the co-translational insertion of the first transmembrane domain (TMD). Without EMC, a proportion of TMD1 inserted in an inverted orientation or failed altogether. Purified EMC and SRP receptor were sufficient for correctly oriented TMD1 insertion, while the Sec61 translocon was necessary for insertion of the next TMD. Enforcing TMD1 topology with an N-terminal signal peptide bypassed the EMC requirement for insertion in vitro and restored efficient biogenesis of multiple GPCRs in EMC-knockout cells. Thus, EMC inserts TMDs co-translationally and cooperates with the Sec61 translocon to ensure accurate topogenesis of many membrane proteins.


Asunto(s)
Retículo Endoplásmico/metabolismo , Membranas Intracelulares/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Receptores de Péptidos/metabolismo , Canales de Translocación SEC/metabolismo , Animales , Línea Celular Tumoral , Retículo Endoplásmico/genética , Femenino , Humanos , Dominios Proteicos , Transporte de Proteínas/fisiología , Receptores Citoplasmáticos y Nucleares/genética , Receptores de Péptidos/genética , Canales de Translocación SEC/genética , Pavos
2.
Cell ; 175(1): 254-265.e14, 2018 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-30220460

RESUMEN

Endoplasmic reticulum (ER) membrane contact sites (MCSs) mark positions where endosomes undergo fission for cargo sorting. To define the role of ER at this unique MCS, we targeted a promiscuous biotin ligase to cargo-sorting domains on endosome buds. This strategy identified the ER membrane protein TMCC1, a member of a conserved protein family. TMCC1 concentrates at the ER-endosome MCSs that are spatially and temporally linked to endosome fission. When TMCC1 is depleted, endosome morphology is normal, buds still form, but ER-associated bud fission and subsequent cargo sorting to the Golgi are impaired. We find that the endosome-localized actin regulator Coronin 1C is required for ER-associated fission of actin-dependent cargo-sorting domains. Coronin 1C is recruited to endosome buds independently of TMCC1, while TMCC1/ER recruitment requires Coronin 1C. This link between TMCC1 and Coronin 1C suggests that the timing of TMCC1-dependent ER recruitment is tightly regulated to occur after cargo has been properly sequestered into the bud.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Células COS , Canales de Calcio , Chlorocebus aethiops , Retículo Endoplásmico/fisiología , Endosomas/fisiología , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Microfilamentos/fisiología , Microtúbulos/metabolismo , Transporte de Proteínas/fisiología
3.
Cell ; 159(5): 1027-1041, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25416943

RESUMEN

Endocytic cargo and Rab GTPases are segregated to distinct domains of an endosome. These domains maintain their identity until they undergo fission to traffic cargo. It is not fully understood how segregation of cargo or Rab proteins is maintained along the continuous endosomal membrane or what machinery is required for fission. Endosomes form contact sites with the endoplasmic reticulum (ER) that are maintained during trafficking. Here, we show that stable contacts form between the ER and endosome at constricted sorting domains, and free diffusion of cargo is limited at these positions. We demonstrate that the site of constriction and fission for early and late endosomes is spatially and temporally linked to contact sites with the ER. Lastly, we show that altering ER structure and dynamics reduces the efficiency of endosome fission. Together, these data reveal a surprising role for ER contact in defining the timing and position of endosome fission.


Asunto(s)
Retículo Endoplásmico/metabolismo , Endosomas/metabolismo , Animales , Células COS , Chlorocebus aethiops , Humanos , Microtúbulos/metabolismo , Proteínas de la Mielina/metabolismo , Proteínas Nogo , Factores de Tiempo
4.
Nature ; 584(7822): 630-634, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32814900

RESUMEN

Integral membrane proteins are encoded by approximately 25% of all protein-coding genes1. In eukaryotes, the majority of membrane proteins are inserted, modified and folded at the endoplasmic reticulum (ER)2. Research over the past several decades has determined how membrane proteins are targeted to the ER and how individual transmembrane domains (TMDs) are inserted into the lipid bilayer3. By contrast, very little is known about how multi-spanning membrane proteins with several TMDs are assembled within the membrane. During the assembly of TMDs, interactions between polar or charged amino acids typically stabilize the final folded configuration4-8. TMDs with hydrophilic amino acids are likely to be chaperoned during the co-translational biogenesis of membrane proteins; however, ER-resident intramembrane chaperones are poorly defined. Here we identify the PAT complex, an abundant obligate heterodimer of the widely conserved ER-resident membrane proteins CCDC47 and Asterix. The PAT complex engages nascent TMDs that contain unshielded hydrophilic side chains within the lipid bilayer, and it disengages concomitant with substrate folding. Cells that lack either subunit of the PAT complex show reduced biogenesis of numerous multi-spanning membrane proteins. Thus, the PAT complex is an intramembrane chaperone that protects TMDs during assembly to minimize misfolding of multi-spanning membrane proteins and maintain cellular protein homeostasis.


Asunto(s)
Proteínas de la Membrana/biosíntesis , Proteínas de la Membrana/metabolismo , Chaperonas Moleculares/metabolismo , Complejos Multiproteicos/metabolismo , Biosíntesis de Proteínas , Secuencia de Aminoácidos , Asparagina/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Membrana Dobles de Lípidos/metabolismo , Modelos Moleculares , Chaperonas Moleculares/química , Complejos Multiproteicos/química , Mutación , Proteínas Nucleares/metabolismo , Unión Proteica , Pliegue de Proteína , Subunidades de Proteína/metabolismo , Especificidad por Sustrato
5.
Trends Cell Biol ; 29(5): 371-384, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30826214

RESUMEN

Ten years ago, high-throughput genetic interaction analyses revealed an abundant and widely conserved protein complex residing in the endoplasmic reticulum (ER) membrane. Dubbed the ER membrane protein complex (EMC), its disruption has since been found to affect wide-ranging processes, including protein trafficking, organelle communication, ER stress, viral maturation, lipid homeostasis, and others. However, its molecular function has remained enigmatic. Recent studies suggest a role for EMC during membrane protein biogenesis. Biochemical reconstitution experiments show that EMC can directly mediate the insertion of transmembrane domains (TMDs) into the lipid bilayer. Given the large proportion of genes encoding membrane proteins, a central role for EMC as a TMD insertion factor can explain its high abundance, wide conservation, and pleiotropic phenotypes.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Animales , Humanos , Proteínas de la Membrana/genética , Biosíntesis de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA