Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Plant Physiol ; 180(4): 1898-1911, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31152126

RESUMEN

Diatoms secrete a significant amount of polysaccharides, which can serve as a critical organic carbon source for bacteria. The 2010 Deepwater Horizon oil spill exposed the Gulf of Mexico to substantial amounts of oil that also impacted the phytoplankton community. Increased production of exopolymeric substances was observed after this oil spill. Polysaccharides make up a major fraction of exopolymeric substances; however, their physiological role during an oil spill remains poorly understood. Here, we analyzed the role of polysaccharides in the growth and physiology of the oil-sensitive diatom Thalassiosira pseudonana and how they shape the surrounding bacterial community and its activity in the presence of oil. We found that inhibition of chrysolaminarin synthesis had a negative effect on the growth of T pseudonana and intracellular monosaccharide accumulation, which in turn suppressed photosynthesis by feedback inhibition. In addition, by acting as a carbon reserve, chrysolaminarin helped in the recovery of T pseudonana in the presence of oil. Inhibition of chrysolaminarin synthesis also influenced the bacterial community in the free-living fraction but not in the phycosphere. Exposure to oil alone led to increased abundance of oil-degrading bacterial genera and the activity of exoenzyme lipase. Our data show that chrysolaminarin synthesis plays an important role in the growth and survival of T pseudonana in the presence of oil, and its inhibition can influence the composition and activity of the surrounding bacterial community.


Asunto(s)
Diatomeas/metabolismo , Diatomeas/microbiología , Hidrocarburos/metabolismo , Polisacáridos/metabolismo , Fotosíntesis/fisiología , Polímeros/metabolismo
2.
New Phytol ; 199(3): 749-57, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23701112

RESUMEN

Bamboo mosaic virus (BaMV) is a single-stranded positive-sense RNA virus. One of the plant glutathione S-transferase (GST) genes, NbGSTU4, responds as an upregulated gene in Nicotiana benthamiana post BaMV infection. In order to identify the role of NbGSTU4 in BaMV infection, the expression of NbGSTU4 was knocked down using a virus-induced gene silencing technique or was transiently expressed in N. benthamiana in BaMV inoculation. The results show a significant decrease in BaMV RNA accumulation when the expression level of NbGSTU4 is reduced; whereas the viral RNA accumulation increases when NbGSTU4 is transiently expressed. Furthermore, this study identified that the involvement of NbGSTU4 in viral RNA accumulation occurs by its participation in the viral early replication step. The findings show that the NbGSTU4 protein expressed from Escherichia coli can interact with the 3' untranslated region (UTR) of the BaMV RNA in vitro in the presence of glutathione (GSH). The addition of GSH in the in vitro replication assay shows an enhancement of minus-strand but not plus-strand RNA synthesis. The results suggest that the plant GST protein plays a role in binding viral RNA and delivering GSH to the replication complex to create a reduced condition for BaMV minus-strand RNA synthesis.


Asunto(s)
Glutatión Transferasa/metabolismo , Virus del Mosaico/fisiología , Nicotiana/enzimología , Nicotiana/virología , Proteínas de Plantas/metabolismo , Replicación Viral , Regiones no Traducidas 3'/genética , Western Blotting , Reactivos de Enlaces Cruzados/farmacología , Técnicas de Silenciamiento del Gen , Glutatión/farmacología , Virus del Mosaico/efectos de los fármacos , Virus del Mosaico/efectos de la radiación , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , ARN Viral/biosíntesis , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Nicotiana/efectos de los fármacos , Nicotiana/efectos de la radiación , Rayos Ultravioleta , Replicación Viral/efectos de los fármacos , Replicación Viral/efectos de la radiación
3.
Sci Total Environ ; 748: 141469, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-33113698

RESUMEN

The substantial increase in plastic pollution in marine ecosystems raises concerns about its adverse impacts on the microbial community. Microorganisms (bacteria, phytoplankton) are important producers of exopolymeric substances (EPS), which govern the processes of marine organic aggregate formation, microbial colonization, and pollutant mobility. Until now, the effects of nano- and micro-plastics on characteristics of EPS composition have received little attention. This study investigated EPS secretion by four phytoplankton species following exposure to various concentrations of polystyrene nano- and microplastics (55 nm nanoparticles; 1 and 6 µm microparticles). The 55 nm nanoparticles induced less growth/survival (determined on a DNA basis) and produced EPS with higher protein-to-carbohydrate (P/C) ratios than the exposure to microplastic particles. The amount of DNA from the four marine phytoplankton showed a higher negative linear correlation with increasing P/C ratios, especially in response to nanoplastic exposure. These results provide evidence that marine phytoplankton are quite sensitive to smaller-sized plastics and actively modify their EPS chemical composition to cope with the stress from pollution. Furthermore, the release of protein-rich EPS was found to facilitate aggregate formation and surface modification of plastic particles, thereby affecting their fate and colonization. Overall, this work offers new insights into the potential harm of different-sized plastic particles and a better understanding of the responding mechanism of marine phytoplankton for plastic pollution. The data also provide needed information about the fate of marine plastics and biogenic aggregation and scavenging processes.


Asunto(s)
Fitoplancton , Contaminantes Químicos del Agua , Ecosistema , Matriz Extracelular de Sustancias Poliméricas , Microplásticos , Plásticos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
J Hazard Mater ; 161(2-3): 920-5, 2009 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-18538925

RESUMEN

A specific mercuric ion binding protein (MerP) originating from transposon TnMERI1 of Bacillus megaterium strain MB1 isolated from Minamata Bay displayed good adsorption capability for a variety of heavy metals. In this study, the Gram-positive MerP protein was expressed in transgenic Arabidopsis to create a model system for phytoremediation of heavy metals. Under control of an actin promoter, the transgenic Arabidpsis showed higher tolerance and accumulation capacity for mercury, cadium and lead when compared with the control plant. Results from confocal microscopy analysis also indicate that MerP was localized at the cell membrane and vesicles of plant cells. The developed transgenic plants possessing excellent metal-accumulative ability could have potential applications in decontamination of heavy metals.


Asunto(s)
Proteínas Bacterianas/química , Biodegradación Ambiental , Iones , Mercurio/química , Metales Pesados/análisis , Arabidopsis/genética , Bacillus megaterium/genética , Secuencia de Bases , Regulación Bacteriana de la Expresión Génica , Microscopía Fluorescente/métodos , Modelos Genéticos , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Proteínas/metabolismo , Rhizobium/metabolismo
5.
Sci Total Environ ; 654: 872-877, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30453257

RESUMEN

Organic matter export from the euphotic zone is a key component of oceanic carbon (C) and nitrogen (N) cycles. Although interactions between these two cycles are important, studies on geochemical processes to directly connect them are limited. Here we show that sunlight can induce chemical aggregation of dissolved organic matter (DOM) into high N containing photo-aggregates. The size of microgels in natural coastal seawaters increased by18~25% compared to corresponding dark controls. Within a relatively short time (1 h), the C and N sequestered into the photo-aggregates accounted for 10% and 13% of the bulk particulate C and N, respectively. The N/C ratio of the photo-aggregates was two times higher after sunlight irradiation. Furthermore, we show that the aggregation process was dependent on reactive oxygen species (ROS). To accommodate for the different organic material in the marine environment, we monitored the particle size in various extracellular polymeric substances (EPS) and model biopolymers using flow cytometry, dynamic laser scattering, and scanning electron microscopy. We found that proteins play important roles in light-induced aggregation, which is in contrast to previous views that sunlight can break down DOM and interrupt aggregation. The photo-flocculation process involving organic N provides new insights into DOM assembly, bioavailability, and sedimentation, and thus potentially link the C and N cycles.

6.
Nanoscale Res Lett ; 14(1): 14, 2019 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-30623247

RESUMEN

Research on the toxicity of nanoparticles has developed over recent years due to their increasing prevalence in common everyday materials. Various nanoparticles have been reported to promote and induce mucus secretion, which could potentially lead to airway damages and respiratory complications. Lanthanum strontium manganite (LSM) is a nanoparticle widely used in solar oxidized fuel cells (SOFCs) due to its high electrical conductivity, high electrochemical activity for O2 reduction reaction, high thermal stability and compatibility of SOFC electrolytes, and most importantly, its microstructural stability and long-term performance. Very few studies have been conducted on LMS's toxicity, thus its effect on airway cells was investigated in this study. After treating trachea cells with increasing concentrations of LSM ranging up to 500 µg/ml, we found that it has a moderate effect on cell viability, ROS production, cytochrome C, and caspase 3 expression. Despite its minimal impact on stated apoptosis-inducing characteristics, LSM illustrated an inhibiting effect on mucus secretion. We obtained a decreasing trend in mucus secretion with an increased concentration of the LSM treatment. Overall, LSM's advancement in SOFCs necessitated a toxicity study, and although it does not show a significant toxicity to trachea cells, LSM reduces mucus secretion, and can potentially interfere with airway clearance.

7.
Sci Total Environ ; 657: 1535-1542, 2019 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-30677919

RESUMEN

Spilled oil treated with Corexit dispersant can cause unintended impacts on marine environment systems including altering marine organic matter dynamics; however, impacts on microgels and marine oil snow (MOS) formation are still debated and remain to be fully understood. Extracellular polymeric substances (EPS) are a major source of marine organic carbon for MOS and microgel formation. EPS initial aggregation plays key roles in the oil degrading process and various biogeochemical reactions. Here we used four types of EPS with water accommodated fraction (WAF), chemically-enhanced WAF (CEWAF) and Corexit, to represent potential situations during oil spills and post-application of Corexit. We found that Corexit alone can inhibit EPS aggregation and disperse pre-existing microgels. CEWAF can enhance EPS aggregation with efficiency by up to 80%-100% and more aggregates accumulated within the air-water interface. Additionally, more hydrophobic EPS aggregates showed high resistance to Corexit dispersion while hydrophilic EPS were more sensitive. Effects of oil spills on marine gel particle formation are primarily determined by chemical characteristics (hydrophobicity and protein content) of the constituent EPS. This study offers unique insights for organic particle dynamics and identifies controlling factors for MOS or gel particles associated with oil spills and Corexit dispersant used.


Asunto(s)
Ambiente , Restauración y Remediación Ambiental/métodos , Matriz Extracelular de Sustancias Poliméricas/química , Contaminación por Petróleo , Petróleo , Organismos Acuáticos/metabolismo , Fitoplancton/metabolismo , Tensoactivos/química
8.
Sci Total Environ ; 634: 316-320, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29627555

RESUMEN

The environmental impact of nanoplastics (NPs) released into natural aquatic surroundings is an increasing concern. NPs are widely generated from our daily waste disposal and eventually reach the ocean, wherein consequent influences on aquatic environments remain unclear. In this regard, there are few studies investigating NP-related ecological impacts. Comprising one of Earth's major carbon pools, marine dissolved organic matter (DOM) serves an essential role in global carbon dynamics. The spontaneous assembly of DOM into particulate organic matter (POM) plays important roles in the marine carbon cycle, and is involved in hemostasis of various ecological communities. Here, we report that 10 ppb NPs (polystyrene/polymethyl methacrylate, 25 nm) appeared in a water column accelerate the kinetic assembly rate of DOM-POM transition. NPs with various characteristics show similar influences on DOM assembly, and seawater samples collected from disparate sites were used to further confirm this unanticipated phenomenon. In this study, we demonstrated that hydrophobic interactions contribute to the facilitation of NP-DOM aggregations. Our results illustrate that NPs alter DOM-POM assembly, which may potentiate unanticipated perturbation to the largest marine carbon pool. Such effects would warrant increased vigilance on current practices of plastic usage and disposal.

9.
Sci Total Environ ; 631-632: 262-269, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29525705

RESUMEN

Nanotoxicity studies associated with various nanoparticles (NPs) have attracted intense research interest due to the broader applications of nanoparticles in our daily lives. The exposure of nanoparticles can lead to hypersecretion and accumulation of airway mucus which are closely associated with many respiratory diseases. Titanium dioxide (TiO2), one of the PM10 components, is a major NP that is widely utilized in many commercial products. Our previous study established the connection between induced airway mucus secretion and TiO2 NPs. However, the countermeasure to reduce the harmful effects of TiO2 NPs, especially airway mucus secretion, remains unexplored. One of the potential candidates to reduce airway mucus secretion is cerium oxide (CeO2) NPs. It has been reported that CeO2 NPs can protect cells by diminishing ROS and inflammatory responses. Herein, our study shows that CeO2 NPs are able to reduce cytosolic Ca2+ changes and mitochondrial damage caused by TiO2 NPs. Our results provide the evidence that hypersecretion of mucus and apoptosis progression induced by TiO2 NPs can be attenuated by CeO2 NPs. This study highlights the potential capacity of CeO2 NPs as a supplementary material for TiO2 NPs applications in the future.


Asunto(s)
Cerio/metabolismo , Nanopartículas del Metal/toxicidad , Sustancias Protectoras/metabolismo , Sistema Respiratorio/efectos de los fármacos , Titanio/toxicidad , Humanos , Sistema Respiratorio/metabolismo
10.
Colloids Surf B Biointerfaces ; 170: 219-223, 2018 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-29929165

RESUMEN

The highly prevalent and virulent disease in the Western Hemisphere Coccidioidomycosis, also known as Valley Fever, can cause serious illness such as severe pneumonia with respiratory failure. It can also take on a disseminated form where the infection spreads throughout the body. Thus, a serious impetus exists to develop effective detection of the disease that can also operate in a rapid and high-throughput fashion. Here, we report the assembly of a highly sensitive biosensor using reduced graphene oxide (rGO) with Coccidioides(cocci) antibodies as the target analytes. The facile design made possible by the scalable microcontact printing (µCP) surface patterning technique which enables rapid, ultrasensitive detection. It provides a wide linear range and sub picomolar (2.5 pg/ml) detection, while also delivering high selectivity and reproducibility. This work demonstrates an important advancement in the development of a sensitive label-free rGO biosensor for Coccidioidomycosis detection. This result also provides the potential application of direct pathogen diagnosis for the future biosensor development.


Asunto(s)
Técnicas Biosensibles , Coccidioidomicosis/diagnóstico , Coccidioidomicosis/microbiología , Grafito/química , Ensayos Analíticos de Alto Rendimiento/métodos , Óxidos/química , Impresión , Anticuerpos Antifúngicos , Humanos , Tamaño de la Partícula , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA