Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 164
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Hum Genomics ; 18(1): 92, 2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39218963

RESUMEN

Per- and poly-fluoroalkyl substances (PFAS) are emerging contaminants of concern because of their wide use, persistence, and potential to be hazardous to both humans and the environment. Several PFAS have been designated as substances of concern; however, most PFAS in commerce lack toxicology and exposure data to evaluate their potential hazards and risks. Cardiotoxicity has been identified as a likely human health concern, and cell-based assays are the most sensible approach for screening and prioritization of PFAS. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a widely used method to test for cardiotoxicity, and recent studies showed that many PFAS affect these cells. Because iPSC-derived cardiomyocytes are available from different donors, they also can be used to quantify human variability in responses to PFAS. The primary objective of this study was to characterize potential human cardiotoxic hazard, risk, and inter-individual variability in responses to PFAS. A total of 56 PFAS from different subclasses were tested in concentration-response using human iPSC-derived cardiomyocytes from 16 donors without known heart disease. Kinetic calcium flux and high-content imaging were used to evaluate biologically-relevant phenotypes such as beat frequency, repolarization, and cytotoxicity. Of the tested PFAS, 46 showed concentration-response effects in at least one phenotype and donor; however, a wide range of sensitivities were observed across donors. Inter-individual variability in the effects could be quantified for 19 PFAS, and risk characterization could be performed for 20 PFAS based on available exposure information. For most tested PFAS, toxicodynamic variability was within a factor of 10 and the margins of exposure were above 100. This study identified PFAS that may pose cardiotoxicity risk and have high inter-individual variability. It also demonstrated the feasibility of using a population-based human in vitro method to quantify population variability and identify cardiotoxicity risks of emerging contaminants.


Asunto(s)
Cardiotoxicidad , Fluorocarburos , Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Humanos , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/patología , Cardiotoxicidad/etiología , Fluorocarburos/toxicidad , Contaminantes Ambientales/toxicidad , Medición de Riesgo , Adulto , Femenino , Masculino , Exposición a Riesgos Ambientales/efectos adversos
2.
Toxicol Appl Pharmacol ; 489: 117015, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917890

RESUMEN

Per- and poly-fluoroalkyl substances (PFAS) have a wide range of elimination half-lives (days to years) in humans, thought to be in part due to variation in proximal tubule reabsorption. While human biomonitoring studies provide important data for some PFAS, renal clearance (CLrenal) predictions for hundreds of PFAS in commerce requires experimental studies with in vitro models and physiologically-based in vitro-to-in vivo extrapolation (IVIVE). Options for studying renal proximal tubule pharmacokinetics include cultures of renal proximal tubule epithelial cells (RPTECs) and/or microphysiological systems. This study aimed to compare CLrenal predictions for PFAS using in vitro models of varying complexity (96-well plates, static 24-well Transwells and a fluidic microphysiological model, all using human telomerase reverse transcriptase-immortalized and OAT1-overexpressing RPTECs combined with in silico physiologically-based IVIVE. Three PFAS were tested: one with a long half-life (PFOS) and two with shorter half-lives (PFHxA and PFBS). PFAS were added either individually (5 µM) or as a mixture (2 µM of each substance) for 48 h. Bayesian methods were used to fit concentrations measured in media and cells to a three-compartmental model to obtain the in vitro permeability rates, which were then used as inputs for a physiologically-based IVIVE model to estimate in vivo CLrenal. Our predictions for human CLrenal of PFAS were highly concordant with available values from in vivo human studies. The relative values of CLrenal between slow- and faster-clearance PFAS were most highly concordant between predictions from 2D culture and corresponding in vivo values. However, the predictions from the more complex model (with or without flow) exhibited greater concordance with absolute CLrenal. Overall, we conclude that a combined in vitro-in silico workflow can predict absolute CLrenal values, and effectively distinguish between PFAS with slow and faster clearance, thereby allowing prioritization of PFAS with a greater potential for bioaccumulation in humans.


Asunto(s)
Simulación por Computador , Fluorocarburos , Túbulos Renales Proximales , Modelos Biológicos , Humanos , Fluorocarburos/farmacocinética , Túbulos Renales Proximales/metabolismo , Semivida , Tasa de Depuración Metabólica , Flujo de Trabajo , Eliminación Renal , Contaminantes Ambientales/farmacocinética , Contaminantes Ambientales/metabolismo , Células Epiteliales/metabolismo
3.
Chem Res Toxicol ; 37(8): 1428-1444, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39046974

RESUMEN

Environmental chemicals may contribute to the global burden of cardiovascular disease, but experimental data are lacking to determine which substances pose the greatest risk. Human-induced pluripotent stem cell (iPSC)-derived cardiomyocytes are a high-throughput cardiotoxicity model that is widely used to test drugs and chemicals; however, most studies focus on exploring electro-physiological readouts. Gene expression data may provide additional molecular insights to be used for both mechanistic interpretation and dose-response analyses. Therefore, we hypothesized that both transcriptomic and functional data in human iPSC-derived cardiomyocytes may be used as a comprehensive screening tool to identify potential cardiotoxicity hazards and risks of the chemicals. To test this hypothesis, we performed concentration-response analysis of 464 chemicals from 12 classes, including both pharmaceuticals and nonpharmaceutical substances. Functional effects (beat frequency, QT prolongation, and asystole), cytotoxicity, and whole transcriptome response were evaluated. Points of departure were derived from phenotypic and transcriptomic data, and risk characterization was performed. Overall, 244 (53%) substances were active in at least one phenotype; as expected, pharmaceuticals with known cardiac liabilities were the most active. Positive chronotropy was the functional phenotype activated by the largest number of tested chemicals. No chemical class was particularly prone to pose a potential hazard to cardiomyocytes; a varying proportion (10-44%) of substances in each class had effects on cardiomyocytes. Transcriptomic data showed that 69 (15%) substances elicited significant gene expression changes; most perturbed pathways were highly relevant to known key characteristics of human cardiotoxicants. The bioactivity-to-exposure ratios showed that phenotypic- and transcriptomic-based POD led to similar results for risk characterization. Overall, our findings demonstrate how the integrative use of in vitro transcriptomic and phenotypic data from iPSC-derived cardiomyocytes not only offers a complementary approach for hazard and risk prioritization, but also enables mechanistic interpretation of the in vitro test results to increase confidence in decision-making.


Asunto(s)
Células Madre Pluripotentes Inducidas , Miocitos Cardíacos , Transcriptoma , Humanos , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/citología , Células Madre Pluripotentes Inducidas/efectos de los fármacos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Transcriptoma/efectos de los fármacos , Contaminantes Ambientales/toxicidad , Relación Dosis-Respuesta a Droga , Células Cultivadas
4.
Environ Sci Technol ; 58(19): 8278-8288, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38697947

RESUMEN

Chemicals assessment and management frameworks rely on regulatory toxicity values, which are based on points of departure (POD) identified following rigorous dose-response assessments. Yet, regulatory PODs and toxicity values for inhalation exposure (i.e., reference concentrations [RfCs]) are available for only ∼200 chemicals. To address this gap, we applied a workflow to determine surrogate inhalation route PODs and corresponding toxicity values, where regulatory assessments are lacking. We curated and selected inhalation in vivo data from the U.S. EPA's ToxValDB and adjusted reported effect values to chronic human equivalent benchmark concentrations (BMCh) following the WHO/IPCS framework. Using ToxValDB chemicals with existing PODs associated with regulatory toxicity values, we found that the 25th %-ile of a chemical's BMCh distribution (PODp25BMCh) could serve as a suitable surrogate for regulatory PODs (Q2 ≥ 0.76, RSE ≤ 0.82 log10 units). We applied this approach to derive PODp25BMCh for 2,095 substances with general non-cancer toxicity effects and 638 substances with reproductive/developmental toxicity effects, yielding a total coverage of 2,160 substances. From these PODp25BMCh, we derived probabilistic RfCs and human population effect concentrations. With this work, we have expanded the number of chemicals with toxicity values available, thereby enabling a much broader coverage for inhalation risk and impact assessment.


Asunto(s)
Exposición por Inhalación , Reproducción , Humanos , Reproducción/efectos de los fármacos , Medición de Riesgo
5.
Environ Sci Technol ; 58(35): 15638-15649, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38693844

RESUMEN

Chemical points of departure (PODs) for critical health effects are crucial for evaluating and managing human health risks and impacts from exposure. However, PODs are unavailable for most chemicals in commerce due to a lack of in vivo toxicity data. We therefore developed a two-stage machine learning (ML) framework to predict human-equivalent PODs for oral exposure to organic chemicals based on chemical structure. Utilizing ML-based predictions for structural/physical/chemical/toxicological properties from OPERA 2.9 as features (Stage 1), ML models using random forest regression were trained with human-equivalent PODs derived from in vivo data sets for general noncancer effects (n = 1,791) and reproductive/developmental effects (n = 2,228), with robust cross-validation for feature selection and estimating generalization errors (Stage 2). These two-stage models accurately predicted PODs for both effect categories with cross-validation-based root-mean-squared errors less than an order of magnitude. We then applied one or both models to 34,046 chemicals expected to be in the environment, revealing several thousand chemicals of moderate concern and several hundred chemicals of high concern for health effects at estimated median population exposure levels. Further application can expand by orders of magnitude the coverage of organic chemicals that can be evaluated for their human health risks and impacts.


Asunto(s)
Aprendizaje Automático , Reproducción , Humanos , Reproducción/efectos de los fármacos , Medición de Riesgo
6.
Regul Toxicol Pharmacol ; 148: 105596, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38447894

RESUMEN

To fulfil the promise of reducing reliance on mammalian in vivo laboratory animal studies, new approach methods (NAMs) need to provide a confident basis for regulatory decision-making. However, previous attempts to develop in vitro NAMs-based points of departure (PODs) have yielded mixed results, with PODs from U.S. EPA's ToxCast, for instance, appearing more conservative (protective) but poorly correlated with traditional in vivo studies. Here, we aimed to address this discordance by reducing the heterogeneity of in vivo PODs, accounting for species differences, and enhancing the biological relevance of in vitro PODs. However, we only found improved in vitro-to-in vivo concordance when combining the use of Bayesian model averaging-based benchmark dose modeling for in vivo PODs, allometric scaling for interspecies adjustments, and human-relevant in vitro assays with multiple induced pluripotent stem cell-derived models. Moreover, the available sample size was only 15 chemicals, and the resulting level of concordance was only fair, with correlation coefficients <0.5 and prediction intervals spanning several orders of magnitude. Overall, while this study suggests several ways to enhance concordance and thereby increase scientific confidence in vitro NAMs-based PODs, it also highlights challenges in their predictive accuracy and precision for use in regulatory decision making.


Asunto(s)
Mamíferos , Animales , Humanos , Teorema de Bayes , Medición de Riesgo/métodos
7.
Risk Anal ; 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39148436

RESUMEN

There are two primary sources of uncertainty in the interpretability of toxicity values, like the reference dose (RfD): estimates of the point of departure (POD) and the absence of chemical-specific human variability data. We hypothesize two solutions-employing Bayesian benchmark dose (BBMD) modeling to refine POD determination and combining high-throughput toxicokinetic modeling with population-based toxicodynamic in vitro data to characterize chemical-specific variability. These hypotheses were tested by deriving refined probabilistic estimates for human doses corresponding to a specific effect size (M) in the Ith population percentile (HDM I) across 19 Superfund priority chemicals. HDM I values were further converted to biomonitoring equivalents in blood and urine for benchmarking against human data. Compared to deterministic default-based RfDs, HDM I values were generally more protective, particularly influenced by chemical-specific data on interindividual variability. Incorporating chemical-specific in vitro data improved precision in probabilistic RfDs, with a median 1.4-fold reduction in uncertainty variance. Comparison with US Environmental Protection Agency's Exposure Forecasting exposure predictions and biomonitoring data from the National Health and Nutrition Examination Survey identified chemicals with margins of exposure nearing or below one. Overall, to mitigate uncertainty in regulatory toxicity values and guide chemical risk management, BBMD modeling and chemical-specific population-based human in vitro data are essential.

8.
Environ Geochem Health ; 45(2): 333-342, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35246781

RESUMEN

Residents and advocacy groups began voicing concerns over the environmental quality located in the neighborhoods of Kashmere Gardens, Fifth Ward, and Denver Harbor in Houston, TX, following the confirmation of a cancer cluster in 2019 and another in 2021. These neighborhoods are in close proximity to a railyard and former wood treatment plant known to have utilized coal tar creosote and contain polycyclic aromatic hydrocarbons (PAHs). This research took core soil samples in September and October 2020 from 46 sites to assess for the presence and concentration of the U.S. Environmental Protection Agency's (USEPA) 7 Carcinogenic PAHs. Results showed the cumulative concentration of these PAHs in each sample was variable with a range of 13,767 ng/g to 328 ng/g and a mean of 2,517.2 ng/g ± 3122. A regional soil screening evaluation revealed that 40 of the 46 soil samples were in excess of the USEPAs most conservative screening levels of 1.0 × 10-6 increased cancer risk, but none exceeding levels considered actionable for remediation. This study is a fundamental first step for quantifying the environmental pollutants in this minority-majority community. Findings revealed a low risk of cancer risk based on current PAH concentrations alone but cannot assess contributions from other contaminants or from past, possibly higher, levels of contamination. Further research is needed to identify the potential casual pathways of the observed cancer cluster and to explore possible remediation needs.


Asunto(s)
Neoplasias , Hidrocarburos Policíclicos Aromáticos , Contaminantes del Suelo , Humanos , Suelo , Carbón Mineral/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Monitoreo del Ambiente/métodos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Hidrocarburos Policíclicos Aromáticos/análisis , Texas/epidemiología , Justicia Ambiental , Neoplasias/inducido químicamente , Neoplasias/epidemiología , Medición de Riesgo , China
9.
PLoS Comput Biol ; 17(9): e1009374, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34491990

RESUMEN

Accurate estimates of infection prevalence and seroprevalence are essential for evaluating and informing public health responses and vaccination coverage needed to address the ongoing spread of COVID-19 in each United States (U.S.) state. However, reliable, timely data based on representative population sampling are unavailable, and reported case and test positivity rates are highly biased. A simple data-driven Bayesian semi-empirical modeling framework was developed and used to evaluate state-level prevalence and seroprevalence of COVID-19 using daily reported cases and test positivity ratios. The model was calibrated to and validated using published state-wide seroprevalence data, and further compared against two independent data-driven mathematical models. The prevalence of undiagnosed COVID-19 infections is found to be well-approximated by a geometrically weighted average of the positivity rate and the reported case rate. Our model accurately fits state-level seroprevalence data from across the U.S. Prevalence estimates of our semi-empirical model compare favorably to those from two data-driven epidemiological models. As of December 31, 2020, we estimate nation-wide a prevalence of 1.4% [Credible Interval (CrI): 1.0%-1.9%] and a seroprevalence of 13.2% [CrI: 12.3%-14.2%], with state-level prevalence ranging from 0.2% [CrI: 0.1%-0.3%] in Hawaii to 2.8% [CrI: 1.8%-4.1%] in Tennessee, and seroprevalence from 1.5% [CrI: 1.2%-2.0%] in Vermont to 23% [CrI: 20%-28%] in New York. Cumulatively, reported cases correspond to only one third of actual infections. The use of this simple and easy-to-communicate approach to estimating COVID-19 prevalence and seroprevalence will improve the ability to make public health decisions that effectively respond to the ongoing COVID-19 pandemic.


Asunto(s)
Prueba de COVID-19/estadística & datos numéricos , COVID-19 , Modelos Estadísticos , Anticuerpos Antivirales/sangre , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/inmunología , Biología Computacional , Humanos , Tamizaje Masivo/estadística & datos numéricos , Prevalencia , Estudios Seroepidemiológicos , Estados Unidos/epidemiología
10.
Environ Sci Technol ; 56(22): 16506-16516, 2022 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-36279400

RESUMEN

The benchmark dose (BMD) methodology has significantly advanced the practice of dose-response analysis and created substantial opportunities to enhance the plausibility of BMD estimation by synthesizing dose-response information from different sources. Particularly, integrating existing toxicological information via prior distribution in a Bayesian framework is a promising but not well-studied strategy. The study objective is to identify a plausible way to incorporate toxicological information through informative prior to support BMD estimation using dichotomous data. There are four steps in this study: determine appropriate types of distribution for parameters in common dose-response models, estimate the parameters of the determined distributions, investigate the impact of alternative strategies of prior implementation, and derive endpoint-specific priors to examine how prior-eliciting data affect priors and BMD estimates. A plausible distribution was estimated for each parameter in the common dichotomous dose-response models using a general database. Alternative strategies for implementing informative prior have a limited impact on BMD estimation, but using informative prior can significantly reduce uncertainty in BMD estimation. Endpoint-specific informative priors are substantially different from the general one, highlighting the necessity for guidance on prior elicitation. The study developed a practical way to employ informative prior and laid a foundation for advanced Bayesian BMD modeling.


Asunto(s)
Benchmarking , Modelos Estadísticos , Teorema de Bayes , Incertidumbre , Bases de Datos Factuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA