Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 300(5): 107267, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38583863

RESUMEN

Phospholamban (PLB) is a transmembrane micropeptide that regulates the sarcoplasmic reticulum Ca2+-ATPase (SERCA) in cardiac muscle, but the physical mechanism of this regulation remains poorly understood. PLB reduces the Ca2+ sensitivity of active SERCA, increasing the Ca2+ concentration required for pump cycling. However, PLB does not decrease Ca2+ binding to SERCA when ATP is absent, suggesting PLB does not inhibit SERCA Ca2+ affinity. The prevailing explanation for these seemingly conflicting results is that PLB slows transitions in the SERCA enzymatic cycle associated with Ca2+ binding, altering transport Ca2+ dependence without actually affecting the equilibrium binding affinity of the Ca2+-coordinating sites. Here, we consider another hypothesis, that measurements of Ca2+ binding in the absence of ATP overlook important allosteric effects of nucleotide binding that increase SERCA Ca2+ binding affinity. We speculated that PLB inhibits SERCA by reversing this allostery. To test this, we used a fluorescent SERCA biosensor to quantify the Ca2+ affinity of non-cycling SERCA in the presence and absence of a non-hydrolyzable ATP-analog, AMPPCP. Nucleotide activation increased SERCA Ca2+ affinity, and this effect was reversed by co-expression of PLB. Interestingly, PLB had no effect on Ca2+ affinity in the absence of nucleotide. These results reconcile the previous conflicting observations from ATPase assays versus Ca2+ binding assays. Moreover, structural analysis of SERCA revealed a novel allosteric pathway connecting the ATP- and Ca2+-binding sites. We propose this pathway is disrupted by PLB binding. Thus, PLB reduces the equilibrium Ca2+ affinity of SERCA by interrupting allosteric activation of the pump by ATP.


Asunto(s)
Proteínas de Unión al Calcio , Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Animales , Humanos , Adenosina Trifosfato/metabolismo , Regulación Alostérica , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/química , Miocardio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , Perros , Células HEK293 , Modelos Moleculares , Estructura Terciaria de Proteína
2.
Biophys J ; 122(2): 301-309, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36523160

RESUMEN

The sarco(endo)plasmic reticulum calcium ATPase (SERCA) is an ion transporter that creates and maintains intracellular calcium stores. SERCA is inhibited or stimulated by several membrane micropeptides including another-regulin, dwarf open reading frame, endoregulin, phospholamban (PLB), and sarcolipin. We previously showed that these micropeptides assemble into homo-oligomeric complexes with varying affinity. Here, we tested whether different micropeptides can interact with each other, hypothesizing that coassembly into hetero-oligomers may affect micropeptide bioavailability to regulate SERCA. We quantified the relative binding affinity of each combination of candidates using automated fluorescence resonance energy transfer microscopy. All pairs were capable of interacting with good affinity, similar to the affinity of micropeptide self-binding (homo-oligomerization). Testing each pair at a 1:5 ratio and a reciprocal 5:1 ratio, we noted that the affinity of hetero-oligomerization of some micropeptides depended on whether they were the minority or majority species. In particular, sarcolipin was able to join oligomers when it was the minority species but did not readily accommodate other micropeptides in the reciprocal experiment when it was expressed in fivefold excess. The opposite was observed for endoregulin. PLB was a universal partner for all other micropeptides tested, forming avid hetero-oligomers whether it was the minority or majority species. Increasing expression of SERCA decreased PLB-dwarf open reading frame hetero-oligomerization, suggesting that SERCA-micropeptide interactions compete with micropeptide-micropeptide interactions. Thus, micropeptides populate a regulatory network of diverse protein assemblies. The data suggest that the complexity of this interactome increases exponentially with the number of micropeptides that are coexpressed in a particular tissue.


Asunto(s)
Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Calcio/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transporte Iónico , Proteínas de Unión al Calcio/química , Micropéptidos
3.
J Biol Chem ; 298(7): 102060, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35605666

RESUMEN

The ATP-dependent ion pump sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) sequesters Ca2+ in the endoplasmic reticulum to establish a reservoir for cell signaling. Because of its central importance in physiology, the activity of this transporter is tightly controlled via direct interactions with tissue-specific regulatory micropeptides that tune SERCA function to match changing physiological conditions. In the heart, the micropeptide phospholamban (PLB) inhibits SERCA, while dwarf open reading frame (DWORF) stimulates SERCA. These competing interactions determine cardiac performance by modulating the amplitude of Ca2+ signals that drive the contraction/relaxation cycle. We hypothesized that the functions of these peptides may relate to their reciprocal preferences for SERCA binding; SERCA binds PLB more avidly at low cytoplasmic [Ca2+] but binds DWORF better when [Ca2+] is high. In the present study, we demonstrated this opposing Ca2+ sensitivity is due to preferential binding of DWORF and PLB to different intermediate states that SERCA samples during the Ca2+ transport cycle. We show PLB binds best to the SERCA E1-ATP state, which prevails at low [Ca2+]. In contrast, DWORF binds most avidly to E1P and E2P states that are more populated when Ca2+ is elevated. Moreover, FRET microscopy revealed dynamic shifts in SERCA-micropeptide binding equilibria during cellular Ca2+ elevations. A computational model showed that DWORF exaggerates changes in PLB-SERCA binding during the cardiac cycle. These results suggest a mechanistic basis for inhibitory versus stimulatory micropeptide function, as well as a new role for DWORF as a modulator of dynamic oscillations of PLB-SERCA regulatory interactions.


Asunto(s)
Proteínas de Unión al Calcio , Calcio , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico , Adenosina Trifosfato/metabolismo , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Humanos , Transporte Iónico , Péptidos/metabolismo , Unión Proteica , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
4.
Development ; 143(21): 4085-4094, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27697903

RESUMEN

A limited number of signaling pathways are repeatedly used to regulate a wide variety of processes during development and differentiation. The lack of tools to manipulate signaling pathways dynamically in space and time has been a major technical challenge for biologists. Optogenetic techniques, which utilize light to control protein functions in a reversible fashion, hold promise for modulating intracellular signaling networks with high spatial and temporal resolution. Applications of optogenetics in multicellular organisms, however, have not been widely reported. Here, we create an optimized bicistronic optogenetic system using Arabidopsis thaliana cryptochrome 2 (CRY2) protein and the N-terminal domain of cryptochrome-interacting basic-helix-loop-helix (CIBN). In a proof-of-principle study, we develop an optogenetic Raf kinase that allows reversible light-controlled activation of the Raf/MEK/ERK signaling cascade. In PC12 cells, this system significantly improves light-induced cell differentiation compared with co-transfection. When applied to Xenopus embryos, this system enables blue light-dependent reversible Raf activation at any desired developmental stage in specific cell lineages. Our system offers a powerful optogenetic tool suitable for manipulation of signaling pathways with high spatial and temporal resolution in a wide range of experimental settings.


Asunto(s)
Diferenciación Celular/genética , Desarrollo Embrionario/genética , Optogenética/métodos , Fosfotransferasas/metabolismo , Animales , Arabidopsis , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Criptocromos/química , Criptocromos/genética , Luz , Sistema de Señalización de MAP Quinasas , Células PC12 , Fosforilación , Fosfotransferasas/genética , Ratas , Transducción de Señal , Transgenes , Xenopus , Quinasas raf/metabolismo
5.
Exp Cell Res ; 357(2): 310-319, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28583763

RESUMEN

Osteoarthritis (OA) is characterized by degeneration of articular cartilage within the joint, inflammation and pain. The purpose of this study was to develop a primary, serum free cell culture system of human osteoarthritic articular chondrocytes (HOACs) with which to study manifestations of the disease process. Joint tissues were obtained from OA patients undergoing total knee arthroplasty (TKA). HOACs isolated from the femoral condyles and tibial plateau of the same side were combined, plated in three-dimensional, alginate beads and cultured for five days in serum, hormone and protein free medium. More living cells were obtained from the femoral condyles than the tibial plateau. The optimal plating density was 2.5 × 106 cells/ml of alginate. The amounts of DNA, RNA, proteoglycans and total collagen were similar in cultures prepared from the sides of least and greatest pathology. More type 1 than type 2 collagen was detected in the medium on days 2 and 5. A greater percentage of type 1 than type 2 collagen was degraded. The inflammatory cytokine interleukin-1 beta was present in the medium and alginate associated matrix. Although variation in the metabolic profiles between subjects was observed, HOACs from all patients continued to reflect the OA phenotype for five days in culture. This serum free, three-dimensional primary culture system of HOACs provides a platform with which to measure clinically relevant endpoints of OA and screen potential disease modifying OA therapeutics.


Asunto(s)
Cartílago Articular/citología , Condrocitos/metabolismo , Osteoartritis/metabolismo , Cultivo Primario de Células , Proteoglicanos/metabolismo , Colágeno/metabolismo , Colágeno Tipo II/metabolismo , Medio de Cultivo Libre de Suero , Matriz Extracelular/metabolismo , Humanos
6.
Hum Mol Genet ; 23(18): 4758-69, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24760770

RESUMEN

Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Ataxia/patología , Síndrome de Cogan/genética , ADN Helicasas/metabolismo , Redes Reguladoras de Genes , ARN Helicasas/metabolismo , Animales , Apraxias/congénito , Ataxia/sangre , Ataxia/genética , Línea Celular , Cerebelo/metabolismo , ADN Helicasas/genética , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Enzimas Multifuncionales , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenotipo , ARN Helicasas/genética , Análisis de Secuencia de ARN
7.
Anal Biochem ; 481: 7-9, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-25912418

RESUMEN

Precise DNA manipulation is critical for molecular biotechnology. Restriction enzyme-based approaches are limited by their requirement of specific enzyme sites. Restriction-free cloning has greatly improved the flexibility and speed of precise DNA assembly. Most of these approaches focus on DNA assembly rather than gene removal. Here we present a polymerase chain reaction (PCR)-based cloning method that allows removal of multiple gene segments from plasmids without using restriction enzymes and thermostable ligase. We demonstrate simultaneous removal of three gene segments from a plasmid. This approach could be beneficial to DNA library construction, genetic and protein engineering, and synthetic biology.


Asunto(s)
Clonación Molecular/métodos , ADN/genética , Plásmidos/genética , Reacción en Cadena de la Polimerasa/métodos , Resistencia a la Ampicilina , Secuencia de Bases , Biblioteca de Genes , Genes , Resistencia a la Kanamicina
8.
Cerebellum ; 12(2): 162-4, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22843192

RESUMEN

A family with late-onset autosomal dominant pure cerebellar ataxia, consistent with spinocerebellar ataxia type 5 (SCA5) but lacking previously reported SPTBN2 mutations, was identified. DNA was collected from seven individuals across two generations and the SPTBN2 gene on chromosome 11 was sequenced. A nonsynonymous heterozygous substitution in exon 12 was detected in individuals diagnosed with SCA5 while unaffected family members did not possess this variant. The identified c.1415C>T variant results in a p.T472M substitution in the second SPEC domain of the beta-III spectrin protein. The threonine at position 472 is not in close proximity to the characteristic residues that define the SPEC domain and is variable across diverse SPEC domains, yet is highly conserved in SPTBN2. Consistent with these observations, bioinformatic analysis of the p.T472M variant suggests it to be pathological. Two deletions within the SPTBN2 SPEC domains (E532_M544del and L629_R634delinsW) have been previously reported to cause SCA5, but this is the first missense mutation in this region of the protein shown to likely be pathogenic.


Asunto(s)
Salud de la Familia , Mutación Missense/genética , Espectrina/genética , Ataxias Espinocerebelosas/genética , Anciano , Femenino , Humanos , Masculino
9.
J Am Assoc Lab Anim Sci ; 62(2): 116-122, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36878483

RESUMEN

Maintaining compliance with cage density recommendations in The Guide for the Care and Use of Laboratory Animals precludes continuous trio breeding in standard-sized mouse cages. This study evaluated and compared several parameters of reproductive performance, intracage ammonia concentration, and fecal corticosterone levels in 2 strains of mice, C57BL/6J (B6) and B6.129S(Cg)-Stat1tm1Dlv/J (STAT1-/-), housed as continuous breeding pairs or trios in standard-sized mouse cages, and continuous breeding trios in standard-sized rat cages. Reproductive performance data indicated that STAT1-/- trios raised in rat cages weaned significantly more pups per litter than did STAT1-/- trios raised in mouse cages, and B6 mice had higher pup survival rates at weaning than did STAT1-/- mice in mouse cages housing continuous breeding trios. In addition, the Production Index was significantly higher for B6 breeding trios in rat cages than for B6 trios in mouse cages. Intracage ammonia concentration increased with cage density, with significantly higher ammonia concentrations in mouse cages housing trios compared with rat cages housing trios. However, fecal corticosterone levels did not differ significantly regardless of genotype, breeding configuration, or cage size, and daily health checks revealed no clinical abnormalities under any of the conditions evaluated. These results suggest that, although continuous trio breeding in standard-sized mouse cages does not seem to compromise mouse welfare, it offers no advantage in reproductive performance compared with pair breeding, and in some cases, it might be disadvantageous in this regard. Further, high intracage ammonia in mouse cages containing breeding trios might necessitate more frequent cage changes.


Asunto(s)
Amoníaco , Corticosterona , Animales , Ratones , Ratas , Vivienda para Animales , Ratones Endogámicos C57BL , Reproducción
10.
bioRxiv ; 2023 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-37292897

RESUMEN

The sarco(endo)plasmic reticulum Ca 2+ ATPase (SERCA) is a membrane transporter that creates and maintains intracellular Ca 2+ stores. In the heart, SERCA is regulated by an inhibitory interaction with the monomeric form of the transmembrane micropeptide phospholamban (PLB). PLB also forms avid homo-pentamers, and dynamic exchange of PLB between pentamers and the regulatory complex with SERCA is an important determinant of cardiac responsiveness to exercise. Here, we investigated two naturally occurring pathogenic mutations of PLB, a cysteine substitution of arginine 9 (R9C) and an in-frame deletion of arginine 14 (R14del). Both mutations are associated with dilated cardiomyopathy. We previously showed that the R9C mutation causes disulfide crosslinking and hyperstabilization of pentamers. While the pathogenic mechanism of R14del is unclear, we hypothesized that this mutation may also alter PLB homo-oligomerization and disrupt the PLB-SERCA regulatory interaction. SDS-PAGE revealed a significantly increased pentamer:monomer ratio for R14del-PLB when compared to WT-PLB. In addition, we quantified homo-oligomerization and SERCA-binding in live cells using fluorescence resonance energy transfer (FRET) microscopy. R14del-PLB showed an increased affinity for homo-oligomerization and decreased binding affinity for SERCA compared to WT, suggesting that, like R9C, the R14del mutation stabilizes PLB in its pentameric form, decreasing its ability to regulate SERCA. Moreover, the R14del mutation reduces the rate of PLB unbinding from the pentamer after a transient Ca 2+ elevation, limiting the rate of re-binding to SERCA. A computational model predicted that hyperstabilization of PLB pentamers by R14del impairs the ability of cardiac Ca 2+ handling to respond to changing heart rates between rest and exercise. We postulate that impaired responsiveness to physiological stress contributes to arrhythmogenesis in human carriers of the R14del mutation.

11.
Cell Calcium ; 99: 102468, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34517214

RESUMEN

The gamma secretase catalytic subunit presenilin 1 (PS1) is expressed in the endoplasmic reticulum (ER) of neurons, where it regulates Ca2+ signaling. PS1 is also expressed in heart, but its role in regulation of cardiac Ca2+ transport remains unknown. Since the type 2 sarco/endoplasmic reticulum Ca2+ ATPase (SERCA2a) plays a central role in cardiac Ca2+ homeostasis, we studied whether PS1 regulates the cardiac SERCA2a function. The experiments were conducted in an inducible human SERCA2a stable T-Rex-293 cell line transfected with fluorescently labeled PS1 and the ER Ca2+ sensor R-CEPIA1er. Confocal imaging showed that that PS1 is localized predominantly in the ER membrane. Fluorescent resonance energy transfer (FRET) experiments in HEK293 cells transfected with fluorescently labeled SERCA2a and PS1 revealed that the two proteins directly interact with a 1:1 stoichiometry. The functional significance of this interaction was investigated in a heterologous cellular environment using a novel approach to directly measure ER Ca2+ dynamics. Measurements of SERCA2a-mediated Ca2+ transport showed that PS1 enhanced Ca2+ uptake at low ER Ca2+ loads (<0.15 mM) and reduced uptake at high loads (>0.35 mM). The results of this study revealed that PS1 could act as an important regulator of the cardiac Ca2+ pump function with a complex stimulatory/inhibitory profile.


Asunto(s)
Calcio , Retículo Endoplásmico , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Presenilina-1/genética , Presenilina-1/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
12.
Elife ; 102021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-34075877

RESUMEN

The sarco-plasmic reticulum calcium pump (SERCA) plays a critical role in the contraction-relaxation cycle of muscle. In cardiac muscle, SERCA is regulated by the inhibitor phospholamban. A new regulator, dwarf open reading frame (DWORF), has been reported to displace phospholamban from SERCA. Here, we show that DWORF is a direct activator of SERCA, increasing its turnover rate in the absence of phospholamban. Measurement of in-cell calcium dynamics supports this observation and demonstrates that DWORF increases SERCA-dependent calcium reuptake. These functional observations reveal opposing effects of DWORF activation and phospholamban inhibition of SERCA. To gain mechanistic insight into SERCA activation, fluorescence resonance energy transfer experiments revealed that DWORF has a higher affinity for SERCA in the presence of calcium. Molecular modeling and molecular dynamics simulations provide a model for DWORF activation of SERCA, where DWORF modulates the membrane bilayer and stabilizes the conformations of SERCA that predominate during elevated cytosolic calcium.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Péptidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/enzimología , Proteínas de Unión al Calcio/metabolismo , Activación Enzimática , Células HEK293 , Humanos , Simulación de Dinámica Molecular , Péptidos/química , Péptidos/genética , Conformación Proteica , Retículo Sarcoplasmático/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , Relación Estructura-Actividad , Factores de Tiempo
13.
Clin Pediatr (Phila) ; 58(3): 328-335, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30526012

RESUMEN

Support for research involving children has a complicated history. Pediatricians and families have a unique opportunity to share perspectives about the relevance of pediatric clinical research. A national broadcast film on pediatric clinical research was developed to improve knowledge about and willingness to consider a clinical study. The film was delivered to a public audience employing a pre-post design comparing knowledge about clinical research before and after watching If Not for Me: Children and Clinical Studies. Change was measured by the difference in number of questions answered correctly prior to and after viewing the film. Engagement was measured by survey and a live feedback qualitative component. Adults viewing the program demonstrated a significant (P < .0001) difference in knowledge about pediatric clinical research across all domains. This format appears to be a viable approach for improving public education and as a support tool for pediatricians and pediatric researchers about this topic.


Asunto(s)
Estudios Clínicos como Asunto/psicología , Comunicación en Salud/métodos , Películas Cinematográficas , Pediatría , Adolescente , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adulto Joven
14.
PLoS Negl Trop Dis ; 13(12): e0007990, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31877135

RESUMEN

BACKGROUND: Leptospirosis is a widespread zoonotic disease that causes reproductive losses and/or hepatorenal failure in a number of animal species. Wild reservoirs of the disease, such as rodents, harbor the causative bacterium, Leptospira spp., in their kidneys and contaminate the environment by excreting infected urine. In this study, we tested small wild mammals, environmental water, and livestock in the Cumberland Gap region of southeastern Appalachia for the presence of pathogenic Leptospira or leptospiral antibodies. METHODS/RESULTS: Small wild mammals (n = 101) and environmental water samples (n = 89) were screened by a real time quantitative PCR that targets the pathogenic Leptospira-specific lipl32 gene. Kidneys from 63 small wild mammals (62.37%) and two water sources (2.25%) tested positive for leptospiral DNA. To identify the infecting leptospiral species in qPCR-positive water and kidney samples, a fragment of leptospiral rpoB gene was PCR amplified and sequenced. L. kirschneri and L. interrogans were the leptospiral species carried by small wild mammals. Furthermore, sera from livestock (n = 52; cattle and horses) were screened for leptospiral antibodies using microscopic agglutination test (MAT). Twenty sera (38.46%) from livestock had antibodies to one or more serovars of pathogenic Leptospira spp. CONCLUSIONS: In conclusion, results from our study show exposure to leptospiral infection in farm animals and the presence of this zoonotic pathogen in the environmental water and kidneys of a significant number of small wild mammals. The public health implications of these findings remain to be assessed.


Asunto(s)
Animales Domésticos , Leptospira/aislamiento & purificación , Leptospirosis/veterinaria , Roedores , Microbiología del Agua , Animales , Región de los Apalaches/epidemiología , Proteínas de la Membrana Bacteriana Externa/genética , ARN Polimerasas Dirigidas por ADN/genética , Riñón/microbiología , Leptospira/clasificación , Leptospira/genética , Leptospirosis/epidemiología , Leptospirosis/microbiología , Lipoproteínas/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
15.
J Mol Biol ; 431(22): 4429-4443, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31449798

RESUMEN

The recently-discovered single-span transmembrane proteins endoregulin (ELN), dwarf open reading frame (DWORF), myoregulin (MLN), and another-regulin (ALN) are reported to bind to the SERCA calcium pump in a manner similar to that of known regulators of SERCA activity, phospholamban (PLB) and sarcolipin (SLN). To determine how micropeptide assembly into oligomers affects the availability of the micropeptide to bind to SERCA in a regulatory complex, we used co-immunoprecipitation and fluorescence resonance energy transfer (FRET) to quantify micropeptide oligomerization and SERCA-binding. Micropeptides formed avid homo-oligomers with high-order stoichiometry (n > 2 protomers per homo-oligomer), but it was the monomeric form of all micropeptides that interacted with SERCA. In view of these two alternative binding interactions, we evaluated the possibility that oligomerization occurs at the expense of SERCA-binding. However, even the most avidly oligomeric micropeptide species still showed robust FRET with SERCA, and there was a surprising positive correlation between oligomerization affinity and SERCA-binding. This comparison of micropeptide family members suggests that the same structural determinants that support oligomerization are also important for binding to SERCA. Moreover, the unique oligomerization/SERCA-binding profile of DWORF is in harmony with its distinct role as a PLB-competing SERCA activator, in contrast to the inhibitory function of the other SERCA-binding micropeptides.


Asunto(s)
Péptidos/química , Péptidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/química , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Señalización del Calcio/genética , Señalización del Calcio/fisiología , Proteínas de Unión al Calcio/metabolismo , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Humanos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Sistemas de Lectura Abierta/genética , Unión Proteica , Multimerización de Proteína/genética , Multimerización de Proteína/fisiología , Proteolípidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética
16.
Menopause ; 26(4): 341-349, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30531443

RESUMEN

OBJECTIVE: This study describes women's experiences of the genitourinary syndrome of menopause (GSM) elicited through focus groups and cognitive debriefing sessions during development of a novel patient-reported outcome measure (PROM) designed for use in both clinical care and research. METHODS: A draft questionnaire to identify and assess bothersome genitourinary symptoms associated with estrogen deficiency in menopausal women was developed in five discrete phases from multiple sources of information in accordance with standards for PROM development. GSM was confirmed by report of symptoms in conjunction with a confirmatory pelvic examination and laboratory assessments. RESULTS: Qualitative content interviews were completed in 36 menopausal women with GSM. Cognitive testing of draft PROM items was performed in nine focus groups, including 26 menopausal women with and 15 without GSM. Participants reported a range of symptoms and described associated impacts on more than 15 quality-of-life domains. The majority of women reported that their symptoms impacted their sexual functioning and had a negative effect on their overall quality of life. GSM affected many aspects of menopausal women's lives beyond sexual function, with descriptions of pain when walking, urinating, wearing tight clothes, and with other activities of daily living. CONCLUSIONS: Women's own words methodically recorded and analyzed during qualitative interviews and cognitive debriefing focus groups illuminate the subjective experience of women with GSM. It is hoped that the PROM currently in development will provide an effective tool for increasing our understanding of the prevalence, predictors, and impact of GSM in menopausal women's lives.


Asunto(s)
Menopausia/fisiología , Menopausia/psicología , Medición de Resultados Informados por el Paciente , Encuestas y Cuestionarios , Atrofia , Femenino , Humanos , Persona de Mediana Edad , Calidad de Vida , Disfunciones Sexuales Fisiológicas , Disfunciones Sexuales Psicológicas , Vagina/patología , Vulva/patología
17.
Elife ; 72018 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-30299255

RESUMEN

Calcium (Ca2+) dysregulation is a hallmark of heart failure and is characterized by impaired Ca2+ sequestration into the sarcoplasmic reticulum (SR) by the SR-Ca2+-ATPase (SERCA). We recently discovered a micropeptide named DWORF (DWarf Open Reading Frame) that enhances SERCA activity by displacing phospholamban (PLN), a potent SERCA inhibitor. Here we show that DWORF has a higher apparent binding affinity for SERCA than PLN and that DWORF overexpression mitigates the contractile dysfunction associated with PLN overexpression, substantiating its role as a potent activator of SERCA. Additionally, using a well-characterized mouse model of dilated cardiomyopathy (DCM) due to genetic deletion of the muscle-specific LIM domain protein (MLP), we show that DWORF overexpression restores cardiac function and prevents the pathological remodeling and Ca2+ dysregulation classically exhibited by MLP knockout mice. Our results establish DWORF as a potent activator of SERCA within the heart and as an attractive candidate for a heart failure therapeutic.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Cardiomiopatía Dilatada/fisiopatología , Contracción Miocárdica/efectos de los fármacos , Péptidos/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Insuficiencia Cardíaca/prevención & control , Proteínas con Dominio LIM/deficiencia , Ratones Noqueados , Proteínas Musculares/deficiencia
18.
Vet Sci ; 4(1)2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-29056661

RESUMEN

Leptospirosis is a global zoonosis caused by pathogenic spirochetes classified within the genus Leptospira. Leptospires live in the proximal renal tubules of reservoir or chronic carrier animals, and are shed in the urine. Naïve animals acquire infection either when they come in direct contact with a reservoir or infected animals or by exposure to environmental surface water or soil that is contaminated with their urine. In this study, urine samples from a herd of donkeys on the Caribbean island of St. Kitts were screened using a TaqMan-based real-time quantitative polymerase chain reaction (qPCR) targeting a pathogen-specific leptospiral gene, lipl32. Out of 124 clinically normal donkeys, 22 (18%) tested positive for leptospiral DNA in their urine. Water samples from two water troughs used by the donkeys were also tested, but were found to be free from leptospiral contamination. Detection of leptospiral DNA in the urine of clinically healthy donkeys may point to a role that these animals play in the maintenance of the bacteria on St. Kitts.

19.
Data Brief ; 4: 75-82, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26217766

RESUMEN

This data article contains supplementary figures and methods to the research article entitled, "Multiplex gene removal by two-step polymerase chain reactions" (Krishnamurthy et al., Anal. Biochem., 2015, doi:http://dx.doi.org/10.1016/j.ab.2015.03.033), which presents a restriction-enzyme free method to remove multiple DNA segments from plasmids. Restriction-free cloning methods have dramatically improved the flexibility and speed of genetic manipulation compared to conventional assays based on restriction enzyme digestion (Lale and Valla, 2014. DNA Cloning and Assembly Methods, vol. 1116). Here, we show the basic scheme and characterize the success rate for single and multiplex gene removal from plasmids. In addition, we optimize experimental conditions, including the amount of template, multiple primers mixing, and buffers for DpnI treatment, used in the one-pot reaction for multiplex gene removal.

20.
PLoS One ; 4(10): e7398, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19816598

RESUMEN

BACKGROUND: The chemopreventive effects of resveratrol (RSV) on prostate cancer have been well established; the androgen receptor (AR) plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity. METHODOLOGY: The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+) cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(-) cells serving as controls. AR(+) cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP) assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE). RESULTS: AR in the AR (+) stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment. CONCLUSION: We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.


Asunto(s)
Regulación Neoplásica de la Expresión Génica , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismo , Estilbenos/farmacología , Transcripción Genética , Antineoplásicos Fitogénicos/farmacología , Línea Celular Tumoral , Inmunoprecipitación de Cromatina , ADN Complementario/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HeLa , Humanos , Masculino , Resveratrol , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA