Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Dev Biol ; 385(2): 253-62, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24247008

RESUMEN

Hormone-induced changes in gene expression initiate periodic molts and metamorphosis during insect development. Successful execution of these developmental steps depends upon successive phases of rising and falling 20-hydroxyecdysone (20E) levels, leading to a cascade of nuclear receptor-driven transcriptional activity that enables stage- and tissue-specific responses to the steroid. Among the cellular processes associated with declining steroids is acquisition of secretory competence in endocrine Inka cells, the source of ecdysis triggering hormones (ETHs). We show here that Inka cell secretory competence is conferred by the orphan nuclear receptor ßFTZ-F1. Selective RNA silencing of ßftz-f1 in Inka cells prevents ETH release, causing developmental arrest at all stages. Affected larvae display buttoned-up, the ETH-null phenotype characterized by double mouthparts, absence of ecdysis behaviors, and failure to shed the old cuticle. During the mid-prepupal period, individuals fail to translocate the air bubble, execute head eversion and elongate incipient wings and legs. Those that escape to the adult stage are defective in wing expansion and cuticle sclerotization. Failure to release ETH in ßftz-f1 silenced animals is indicated by persistent ETH immunoreactivity in Inka cells. Arrested larvae are rescued by precisely-timed ETH injection or Inka cell-targeted ßFTZ-F1 expression. Moreover, premature ßftz-f1 expression in these cells also results in developmental arrest. The Inka cell therefore functions as a "gateway cell", whose secretion of ETH serves as a key downstream physiological output enabling stage-specific responses to 20E that are required to advance through critical developmental steps. This secretory function depends on transient and precisely timed ßFTZ-F1 expression late in the molt as steroids decline.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Ecdisona/fisiología , Glándulas Endocrinas/citología , Receptores de Esteroides/fisiología , Animales , Secuencia de Bases , Cartilla de ADN , Proteínas de Unión al ADN/genética , Drosophila melanogaster/fisiología , Técnicas de Silenciamiento del Gen , Reacción en Cadena de la Polimerasa , ARN Mensajero/genética , Receptores de Esteroides/genética
2.
Curr Biol ; 16(14): 1395-407, 2006 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-16860738

RESUMEN

BACKGROUND: At the end of each molt, insects shed their old cuticle by performing the ecdysis sequence, an innate behavior consisting of three steps: pre-ecdysis, ecdysis, and postecdysis. Blood-borne ecdysis-triggering hormone (ETH) activates the behavioral sequence through direct actions on the central nervous system. RESULTS: To elucidate neural substrates underlying the ecdysis sequence, we identified neurons expressing ETH receptors (ETHRs) in Drosophila. Distinct ensembles of ETHR neurons express numerous neuropeptides including kinin, FMRFamides, eclosion hormone (EH), crustacean cardioactive peptide (CCAP), myoinhibitory peptides (MIP), and bursicon. Real-time imaging of intracellular calcium dynamics revealed sequential activation of these ensembles after ETH action. Specifically, FMRFamide neurons are activated during pre-ecdysis; EH, CCAP, and CCAP/MIP neurons are active prior to and during ecdysis; and activity of CCAP/MIP/bursicon neurons coincides with postecdysis. Targeted ablation of specific ETHR ensembles produces behavioral deficits consistent with their proposed roles in the behavioral sequence. CONCLUSIONS: Our findings offer novel insights into how a command chemical orchestrates an innate behavior by stepwise recruitment of central peptidergic ensembles.


Asunto(s)
Conducta Animal , Drosophila/crecimiento & desarrollo , Hormonas de Insectos/fisiología , Muda/fisiología , Neuropéptidos/metabolismo , Transducción de Señal , Animales , Animales Modificados Genéticamente , Calcio/metabolismo , Sistema Nervioso Central/citología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/fisiología , Drosophila/anatomía & histología , FMRFamida/metabolismo , Hormonas de Insectos/metabolismo , Hormonas de Insectos/farmacología , Datos de Secuencia Molecular , Neuronas/citología , Neuronas/metabolismo , Fenotipo , Receptores de Péptidos/genética , Receptores de Péptidos/metabolismo
3.
Insect Biochem Mol Biol ; 36(4): 273-81, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16551541

RESUMEN

Vitellogenin receptor (VgR) is responsible for the receptor-mediated endocytosis of vitellogenin (Vg) in the egg formation of an oviparous animal, including insects. Little is known about regulation of VgR gene expression. We analyzed the upstream region of the VgR gene from Aedes aegypti (AaVgR) to identify regulatory elements responsible for its expression in germ cell-specific ovarian expression. Experiments with genetic transformation using the transgene containing the 1.5-Kb upstream portion of the AaVgR gene fused with DsRed and the piggyBac vector showed that this regulatory region is sufficient for correct female and ovary-specific expression of the transgene. This 1.5-Kb upstream region contained binding sites for the ecdysone regulatory hierarchy early gene products E74 and BR-C, as well as transcription factors determining correct tissue- and stage-specific expression of GATA and HNF3/fkh. In situ hybridization demonstrated that in the ovaries of transgenic females DsRed mRNA was present in ovarian germ cells and nurse cells of mature ovarian follicles, together with VgR mRNA. In contrast, DsRed mRNA was absent in the oocyte that had a high level of endogenous VgR mRNA. Although the 1.5-Kb upstream region was sufficient to drive a high-level germ line cell-specific expression of the reporter, additional signals were required for translocation of exogenous mRNA from nurse cells into the oocyte.


Asunto(s)
Aedes/genética , Regulación de la Expresión Génica , Proteínas de Insectos/genética , Oocitos/metabolismo , Receptores de Lipoproteína/genética , Secuencias Reguladoras de Ácidos Nucleicos , Aedes/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , ADN/genética , Femenino , Genes Reporteros , Ingeniería Genética/métodos , Proteínas de Insectos/metabolismo , Proteínas Luminiscentes/metabolismo , Oocitos/citología , Ovario/citología , Ovario/metabolismo , ARN Mensajero/metabolismo , Receptores de Lipoproteína/metabolismo , Proteínas Recombinantes de Fusión/metabolismo
4.
Proc Natl Acad Sci U S A ; 103(38): 14211-6, 2006 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-16968777

RESUMEN

At the end of each developmental stage, insects perform the ecdysis sequence, an innate behavior necessary for shedding the old cuticle. Ecdysis triggering hormones (ETHs) initiate these behaviors through direct actions on the CNS. Here, we identify the ETH receptor (ETHR) gene in the moth Manduca sexta, which encodes two subtypes of GPCR (ETHR-A and ETHR-B). Expression of ETHRs in the CNS coincides precisely with acquisition of CNS sensitivity to ETHs and behavioral competence. ETHR-A occurs in diverse networks of neurons, producing both excitatory and inhibitory neuropeptides, which appear to be downstream signals for behavior regulation. These peptides include allatostatins, crustacean cardioactive peptide (CCAP), calcitonin-like diuretic hormone, CRF-like diuretic hormones (DHs) 41 and 30, eclosion hormone, kinins, myoinhibitory peptides (MIPs), neuropeptide F, and short neuropeptide F. In particular, cells L(3,4) in abdominal ganglia coexpress kinins, DH41, and DH30, which together elicit the fictive preecdysis rhythm. Neurons IN704 in abdominal ganglia coexpress CCAP and MIPs, whose joint actions initiate the ecdysis motor program. ETHR-A also is expressed in brain ventromedial cells, whose release of EH increases excitability in CCAP/MIP neurons. These findings provide insights into how innate, centrally patterned behaviors can be orchestrated via recruitment of peptide cotransmitter neurons.


Asunto(s)
Conducta Animal/fisiología , Hormonas de Insectos/metabolismo , Manduca/fisiología , Muda/fisiología , Péptidos/metabolismo , Isoformas de Proteínas/metabolismo , Receptores de Péptidos/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Drosophila melanogaster/fisiología , Regulación del Desarrollo de la Expresión Génica , Hibridación in Situ , Hormonas de Insectos/genética , Manduca/anatomía & histología , Datos de Secuencia Molecular , Red Nerviosa/fisiología , Neuronas/citología , Neuronas/metabolismo , Neurotransmisores/metabolismo , Péptidos/genética , Isoformas de Proteínas/genética , Receptores de Péptidos/genética
5.
Proc Natl Acad Sci U S A ; 101(17): 6704-9, 2004 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-15096620

RESUMEN

Corazonin is a highly conserved neuropeptide hormone of wide-spread occurrence in insects yet is associated with no universally recognized function. After discovery of the corazonin receptor in Drosophila, we identified its ortholog in the moth, Manduca sexta, as a prelude to physiological studies. The corazonin receptor cDNA in M. sexta encodes a protein of 436 amino acids with seven putative transmembrane domains and shares common ancestry with its Drosophila counterpart. The receptor exhibits high sensitivity and selectivity for corazonin when expressed in Xenopus oocytes (EC(50) approximately 200 pM) or Chinese hamster ovary cells (EC(50) approximately 75 pM). Northern blot analysis locates the receptor in peripheral endocrine Inka cells, the source of preecdysis- and ecdysis-triggering hormones. Injection of corazonin into pharate larvae elicits release of these peptides from Inka cells, which induce precocious preecdysis and ecdysis behaviors. In vitro exposure of isolated Inka cells to corazonin (25-100 pM) induces preecdysis- and ecdysis-triggering hormone secretion. Using corazonin receptor as a biosensor, we show that corazonin concentrations in the hemolymph 20 min before natural preecdysis onset range from 20 to 80 pM and then decline over the next 30-40 min. These findings support the role of corazonin signaling in initiation of the ecdysis behavioral sequence. We propose a model for peptide-mediated interactions between Inka cells and the CNS underlying this process in insect development.


Asunto(s)
Proteínas de Drosophila , Proteínas de Insectos , Muda/fisiología , Receptores de Neuropéptido/metabolismo , Transducción de Señal , Animales , Conducta Animal/fisiología , Células CHO , Cricetinae , Técnicas para Inmunoenzimas , Manduca , Datos de Secuencia Molecular , Neuropéptidos/fisiología , Filogenia , Receptores de Neuropéptido/fisiología , Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA