Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Anal Chem ; 95(36): 13478-13487, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37523497

RESUMEN

Label-free optical diffraction tomography provides three-dimensional imaging of cells and organelles, along with their refractive index (RI) and volume. These physical parameters are valuable for quantitative and accurate analysis of the subcellular microenvironment and its connections to intracellular biological properties. In biological and biochemical cell analysis, various invasive cell manipulations are used, such as temperature change, chemical fixation, live cell staining with fluorescent dye, and gene overexpression of exogenous proteins. However, it is not fully understood how these various manipulations affect the physicochemical properties of different organelles. In this study, we investigated the impact of these manipulations on the cellular properties of single HeLa cells. We found that after cell fixation and an increase in temperature, the RI value of organelles, such as the nucleus and cytoplasm, significantly decreased overall. Interestingly, unlike the cell nuclei, cytoplasmic RI values were hardly detected after membrane permeation, indicating that only intracytoplasmic components were largely lost. Additionally, our findings revealed that the expression of GFP and GFP-tagged proteins significantly increased the RI values of organelles in living cells compared to the less effective RI changes observed with chemical fluorescence staining for cell organelles. The result demonstrates that distinct types of invasive manipulations can alter the microenvironment of organelles in different ways. Our study sheds new light on how chemical and genetic manipulations affect organelles.


Asunto(s)
Núcleo Celular , Orgánulos , Humanos , Células HeLa , Citoplasma , Citosol/química , Tomografía/métodos
2.
Chemistry ; 26(69): 16383-16391, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32686232

RESUMEN

In this study, two host materials, pCzBzbCz and pCzPybCz, are synthesized to achieve a high efficiency and long lifetime of blue thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). The molecular design strategy involves the introduction of a pyridine group into the core structure of pCzPybCz as an electron-withdrawing unit, and an electron-donating phenyl group into the structure of pCzBzbCz. These host materials demonstrate good thermal stability and high triplet energy (T1 =3.07 eV for pCzBzbCz and 3.06 eV for pCzPybCz) for the fabrication of blue TADF-OLEDs. In particular, pCzPybCz-based OLED devices demonstrate an external quantum efficiency (EQE) of 22.7 % and an operational lifetime of 24 h (LT90 , time to attain 90 % of initial luminance) at an initial luminance of 1000 cd m-2 . This superior lifetime could be explained by the C-N bond dissociation energy (BDE) in the host molecular structure. Furthermore, a mixed-host system using the electron-deficient 2,4-bis(dibenzo[b,d]furan-2-yl)-6-phenyl-1,3,5-triazine (DDBFT) is proposed to inhibit the formation of the anion state of our host materials. In short, the device operational lifetime is further improved by applying DDBFT. The carbazole-based asymmetric host molecule containing a pyridine core realizes a high-efficiency blue TADF-OLED showing a positive effect on the operating lifetime, and can provide useful strategies for designing new host materials.

3.
Nano Lett ; 16(9): 5451-5, 2016 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-27518762

RESUMEN

We report the first example of tuning the large magneto-optic activity of a chiral polymer by addition of stable organic biradicals. The spectral dispersion of Verdet constant, which quantifies magneto-optic response, differs substantially between the base polymer and the nanocomposite. We employed a microscopic model, supported by atomistic calculations, to rationalize the behavior of this nanocomposite system. The suggested mechanism involves magnetic coupling between helical conjugated polymer fibrils, with spatially delocalized helical π-electron density, and the high density of spin states provided by the biradical dopants, which leads to synergistic enhancement of magneto-optic response. Our combined experimental and theoretical studies reveal that the manipulation of magnetic coupling in this new class of magneto-optic materials offers an opportunity to tailor the magnitude, sign, and spectral dispersion of the Verdet constant over a broad range of wavelengths, from the UV to the near-IR. This provides a new strategy for creating conformable materials with extraordinary magneto-optic activity, which can ultimately enable new applications requiring spatially and temporally resolved measurement of extremely weak magnetic fields. In particular, magneto-optic materials, presently employed in technologies like optical isolators and optical circulators, could be used in ultrasensitive optical magnetometers. This, in turn, could open a path toward mapping of brain activity via optical magnetoencephalography.

4.
Org Biomol Chem ; 13(26): 7149-53, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-26058381

RESUMEN

A bifunctional fluorescent probe based on a carbazole-pyrimidine conjugate for Hg(2+) and Cu(2+) detection was designed and synthesized. Probe 3 exhibits red shifts in its absorption and fluorescence spectra with significant visual color changes in the presence of these ions. The detection limits of probe 3 for these metal ions were in the nanomolar range. The probe could also be useful as a solid optical sensor for Hg(2+) and Cu(2+).


Asunto(s)
Carbazoles/química , Cobre/química , Filtración , Colorantes Fluorescentes/química , Mercurio/química , Pirimidinas/química , Gel de Sílice/química , Cromatografía en Capa Delgada , Colorimetría , Cobre/análisis , Cobre/aislamiento & purificación , Diseño de Fármacos , Colorantes Fluorescentes/síntesis química , Concentración de Iones de Hidrógeno , Mercurio/análisis , Mercurio/aislamiento & purificación , Modelos Moleculares , Conformación Molecular , Papel
5.
ACS Appl Mater Interfaces ; 16(13): 16553-16562, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570940

RESUMEN

In this study, two novel multiple resonance (MR) emitters, DtCzBN and Cy-DtCzBN, were designed based on the well-known BCzBN structure and synthesized for narrowband solution-processed organic light-emitting diodes (OLEDs). Cy-DtCzBN possesses a dimeric V-shaped structure formed by coupling two individual DtCzBN units via a nonconjugated cyclohexane linker. When compared with DtCzBN, Cy-DtCzBN, as a medium-sized molecule, was found to maintain the optical and photophysical properties of the corresponding monomeric unit, DtCzBN, but exhibits high thermal stability, excellent solubility, and good film-forming ability. Additionally, solution-processed OLEDs were fabricated by using two sets of molecules: one set of small molecular hosts and emitters (i.e., mCP and DtCzBN) and the other set of medium-sized molecular hosts and emitters (i.e., Cy-mCP and Cy-DtCzBN). Notably, devices using medium-sized molecular hosts and emitters exhibited similar optical and photophysical properties but showed significantly improved reproducibility and thermal stability compared with those based on small molecular hosts and emitters. Our current study provides some insights into molecular design strategies for thermally stable hosts and emitters, which are highly suitable for solution-processed OLEDs.

6.
Nanotechnology ; 24(33): 335203, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23897030

RESUMEN

Enhanced DC conductivity and photoconductivity of cationic carbazole tethered deoxyribonucleic acid (Cz-DNA) in film devices is achieved by incorporating mobility enhancers. An anthracene-based organic semiconductor (namely 4HPA-Ant) and the inorganic semiconductor cadmium sulfide (CdS) multipod nanocrystal (NC) were used as the mobility enhancers. Space charge limited current (SCLC) experiments show that hole mobility in CdS:Cz-DNA composite film is improved significantly, by about an order of magnitude, compared to the Cz-DNA film. Similarly, the DC conductivity of the composite film is slightly enhanced by 4HPA-Ant. The photoconductivity is also improved in the Cz-DNA composite, with both 4HPA-Ant and CdS multipod NCs. The enhancement in photocurrent is by more than an order of magnitude, as demonstrated by current-voltage (I-V) characterization using DNA composite photodetectors.


Asunto(s)
ADN , Nanopartículas/química , Antracenos , Compuestos de Cadmio , Carbazoles , ADN/química , Conductividad Eléctrica , Luz , Nanocompuestos/química , Nanotecnología , Semiconductores , Sulfuros
7.
ACS Appl Mater Interfaces ; 15(16): 20266-20277, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37043738

RESUMEN

The recent breakthrough in power conversion efficiencies (PCEs) of polymer solar cells (PSCs) that contain an active layer of a ternary system has achieved values of 18-19%; this has sparked interest for further research. However, this system has difficulties in optimizing the composition and controlling the interaction between the three active materials. In this study, we investigated the use of a donor1 (D1)-donor2 (D2) conjugated block copolymer (CBP), PM6-b-TT, to replace the physical blend of two donors. PM6-b-TT, which exhibits an extended absorption range, was synthesized by covalently bonding PM6, a medium-band gap polymer, with PBDT-TT, a wide-band gap polymer. The blend films containing PM6-b-TT and Y6-BO acceptor, demonstrated excellent crystallinity and a film morphology favorable for PSCs. The corresponding pseudo-ternary PSC exhibited significantly higher PCE and thermal stability than the PM6:PBDT-TT-based ternary device. This study unambiguously demonstrates that the novel D1-D2 CBP strategy, combined with the conventional binary and ternary system advantages, is a promising material production strategy that can boost the performance of future PSCs.

8.
ACS Appl Mater Interfaces ; 15(50): 58663-58672, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38064280

RESUMEN

Diketopyrrolopyrrole (DPP)-based conjugated copolymers are important organic semiconductors for applications in high-efficiency organic thin-film transistors (OTFTs). However, the direct application of these polymers with rigid backbones in stretchable devices has limitations. In this study, we designed and synthesized three kinds of DPPBT-based copolymers, DPPBT-A1, DPPBT-A3, and DPPBT-A5, which have amide-coupled alkylene conjugation breakers capable of hydrogen bonding. Linkers with different segment lengths were copolymerized with DPP and bithiophene (BT) backbone units. A DPP-based copolymer with alternating BT moieties, DPPBT, was synthesized as a reference fully conjugated copolymer. The synthesized polymers with freely rotational backbone linkers have sufficient flexibility to develop ordered phase domains, even in thin films, in comparison to the reference copolymer. However, the introduction of the conjugation breakers, which disconnect the intramolecular π-π overlapping, tends to decrease the hole mobility (µ) from 0.76 to 0.20 cm2 V-1 s-1 in the corresponding OTFT devices. The TFT fabricated using DPPBT-A3 showed a mobility of 0.50 cm2 V-1 s-1, and the mobility value did not show a significant change even when elongated by more than 50%. Therefore, the molecular design strategy of introducing amide-coupled alkylene conjugation breakers into conjugated polymer chains can contribute significantly to the development of high-mobility stretchable conjugated polymers in future.

9.
Artículo en Inglés | MEDLINE | ID: mdl-36780202

RESUMEN

To obtain high-efficiency solution-processed organic light-emitting diodes (OLEDs), a hole transport material (HTM) capable of solution processing with excellent charge transport properties is required. In this study, a new vinyl polymer (PmCP) containing hole-transporting 1,3-di(9H-carbazol-9-yl)benzene (mCP) in the side chain was successfully synthesized via radical polymerization. PmCP showed good film-forming ability and thermal stability. Moreover, PmCP has a higher triplet energy value and hole mobility than poly(N-vinylcarbazole) (PVK) used as a reference HTM, which can be applied as a hole transport layer (HTL) in thermally activated delayed fluorescence (TADF) OLEDs, providing green and blue emissions. PmCP-based solution-processable TADF-OLEDs containing green- and blue-emitting layers were easily fabricated without damaging the lower HTL while using ethyl acetate as an orthogonal solvent. The corresponding OLEDs possess high external quantum efficiencies of 29.60% and 11.00% for the green- and blue-emitting devices, respectively. They show superior performances compared to PVK-based devices used as a reference. It was confirmed that PmCP as a solution-processable HTM can replace PVK and is universally applicable to both green- and blue-emitting devices.

10.
ACS Appl Mater Interfaces ; 15(23): 28277-28287, 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37256769

RESUMEN

Herein, a novel core molecule for V-shaped host molecules was synthesized, wherein two carbazoles were directly linked to cyclohexane. Cy-mCP and Cy-mCBP hosts were also successfully prepared for solution-processable thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). The Cy-mCP and Cy-mCBP molecules contained a cyclohexane linker directly linked to two small molecular hosts (mCP and mCBP), exhibiting twice the molecular weight while maintaining the basic properties of a single host molecule with improved film-forming ability and solubility in organic solvents. These host materials showed superior thermal stability and high glass transition temperatures compared to lower molecular weight hosts. Green TADF-OLEDs were prepared using the two host materials and 2,4,5,6-tetra(3,6-di-tert-butylcarbazol-9-yl)-1,3-dicyanobenzene (t4CzIPN) emitter, achieving device efficiencies similar to that of a low-molecular-weight host. However, after the incorporation of a V-shaped host, superior characteristics were observed in terms of the thermal stability and operational stability of the device. The synthesis of V-shaped molecules by directly linking two carbazoles to a cyclohexane linker is promising for the development of different hosts for solution-processable OLEDs.

11.
ACS Appl Mater Interfaces ; 15(48): 56106-56115, 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-37994594

RESUMEN

In solution-processed organic light-emitting diodes (OLEDs), achieving high color purity and efficiency is as important as that in vacuum processes. Emitters suitable for solution processing must have excellent solubility in organic solvents, high molecular weight, and compatibility with the host materials. In this study, we synthesized a deep-blue emitter that satisfies the above conditions by introducing a 1,4-bis(indolo[3,2,1-jk]carbazol-2-yl)benzene-based planar emitting core (DICz) structure and four 3,6-di-tert-butyl-9-phenyl-9H-carbazole (tCz) peripheral units, namely, 4tCz-DICz. A comparative compound, 4Hex-DICz, incorporating hexyl phenyl groups was synthesized. In contrast to 4Hex-DICz, 4tCz-DICz exhibited exceptional solubility in organic solvents and superior film-forming properties attributed to the presence of tCz units. Additionally, in the film state, the effective encapsulation of the emitting core (DICz) by the tCz units in 4tCz-DICz helps prevent undesirable molecular aggregation. The solution-processed OLEDs employing the CH-2D1 film, doped with 5 wt % 4tCz-DICz as the emitting layer, exhibited a deep-blue emission at 424 nm, characterized by a narrow bandwidth of 22 nm, and achieved a maximum external quantum efficiency (EQE) of approximately 4.0%. In contrast, the 4Hex-DICz-based device demonstrated an EQE of 2.91%. Consequently, we have successfully demonstrated that the introduction of four bulky tCz units into the DICz core is a promising molecular design strategy for the development of soluble indolocarbazole-based emitters, especially those used in high-performance deep-blue fluorescent OLEDs.

12.
Macromol Rapid Commun ; 33(2): 146-51, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22121017

RESUMEN

A new donor-acceptor copolymer, containing benzodithiophene (BDT) and methyl thiophene-3-carboxylate (3MT) units, is designed and synthesized for polymer solar cells (PSCs). The 3MT unit is used as an electron acceptor unit in this copolymer to provide a lower highest occupied molecular orbital (HOMO) level for obtaining polymer solar cells with a higher open-circuit voltage (VOC). The resulting bulk heterojunction PSC made of the copolymer and [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) exhibits a power conversion efficiency (PCE) up to 4.52%, a short circuit current (JSC) of 10.5 mA · cm-(2), and a VOC of 0.86 V.


Asunto(s)
Energía Solar , Tiazoles/química
13.
ACS Appl Mater Interfaces ; 14(31): 35969-35977, 2022 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-35894557

RESUMEN

Recently, various hosts and emitters for solution-processable thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs) have been developed. However, a few studies have been conducted on hole transport materials (HTMs) with differentiated solubility characteristics for manufacturing multilayer OLEDs using a solution process. Here, three new hole transport (HT) styrene polymers, PICz, PPBCz, and PTPCz, were synthesized by radical polymerization. Each of the polymers exhibited increases in their highest occupied molecular orbital (HOMO) levels and better hole-transporting abilities than poly(9-vinylcarbazole) (PVK) as a reference HT polymer. Furthermore, the three HT polymers exhibited different solubilities in toluene. Therefore, it was not possible to use a toluene solution to prepare the emitting layer (EML). To overcome this problem, ethyl acetate (EA), in which the three HT polymers are insoluble, was used as an orthogonal solvent to prepare an EML solution. In EA-solution-processed green-emitting TADF-OLEDs, the three HT-polymer-based devices displayed somewhat low turn-on voltages of 2.8 V and high external quantum efficiencies (EQEs) of >23%. These values are superior to those of a device with a PVK-HT layer. In addition, the devices manufactured with the EA solution showed high-performance reproducibility owing to the stable formation of each layer. In this study, we removed the HTM solubility constraint by dramatically changing the solvent for preparing the EML solution and provided an efficient strategy for the fabrication of OLED devices via solution processes in the future.

14.
Nat Commun ; 13(1): 210, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-35017508

RESUMEN

Measurements of the electronic circular dichroism (CD) are highly sensitive to the absolute configuration and conformation of chiral molecules and supramolecular assemblies and have therefore found widespread application in the chemical and biological sciences. Here, we demonstrate an approach to simultaneously follow changes in the CD and absorption response of photoexcited systems over the ultraviolet-visible spectral range with 100 fs time resolution. We apply the concept to chiral polyfluorene copolymer thin films and track their electronic relaxation in detail. The transient CD signal stems from the supramolecular response of the system and provides information regarding the recovery of the electronic ground state. This allows for a quantification of singlet-singlet annihilation and charge-pair formation processes. Spatial mapping of chiral domains on femtosecond time scales with a resolution of 50 µm and diffraction-limited steady-state imaging of the circular dichroism and the circularly polarised luminescence (CPL) of the films is demonstrated.

15.
ACS Appl Mater Interfaces ; 14(30): 34909-34917, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35839207

RESUMEN

Silver nanowire (AgNW) electrodes are among the most essential flexible transparent electrodes (FTEs) emerging as promising alternatives to brittle indium tin oxide (ITO) electrodes. The polymer comprising the plastic substrate to which the AgNWs are applied must also satisfy the mechanical requirements of the final device and withstand the device processing conditions. However, AgNW-based FTEs have some limitations, such as poor adhesion to coated plastic substrates, surface roughness, and difficulty in patterning. This study demonstrates a new strategy for creating AgNW-based patterned flexible poly(ethylene 2,6-naphthalate) (PEN)-based electrodes with appreciable optical and electrical properties. Introducing poly(2-hydroxyethyl methacrylate) on the PEN substrate enhanced the adhesion between the substrate and AgNWs and improved the dispersibility of the AgNWs. Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) and a small amount of 2,4-hexadiyne-1,6-diol as a photosensitizer were coated onto the AgNW layer to improve the surface roughness and achieve an effective electrode pattern. By varying the AgNW concentration, we could tune the density and thickness of the AgNWs to optimize the sheet resistance and transmittance. Optimized AgNWs with a sheet resistance of 22.6 Ω/□ and transmittance of 92.3% at 550 nm were achieved. A polymer solar cell (PSC) was fabricated to evaluate the characteristics of the device employing the flexible electrodes. This PSC showed not only a high power conversion efficiency of 11.20%, similar to that of ITO-based devices, but also excellent mechanical stability, which is difficult to achieve in ITO-based flexible devices.

16.
J Nanosci Nanotechnol ; 11(2): 1381-4, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21456193

RESUMEN

Numerous investigations have been made into the development of wide color gamut displays for deep-blue OLEDs, including the RGB sub pixels, and white OLEDs (WOLEDs). One of the well known deep-blue emissive dopants, tris(phenyl-methyl-benzimidazolyl)iridium(III) [Ir(pmb)3], successfully introduced its fascinating color coordinate of Commission Internationale de l'Eclairage (CIE) 1931 (0.17, 0.06), however there have been no reports utilizing its accomplishments as WOLEDs. In this report, using only one phosphorescent dopant, the near UV-deep blue emissive Ir(pmb)3, the WOLEDs having the CIE 1931 coordinate of (0.33, 0.38) at 100 cd/m2 with a color rendering index of 85 are demonstrated. The white emission of the fabricated OLEDs are oriented from the near UV-deep blue emission of Ir(pmb)3 and the successfully controlled exciplex emission, between the Ir(pmb)3-host, and the Ir(pmb)3-interfaced material.

17.
ACS Appl Mater Interfaces ; 13(51): 61454-61462, 2021 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-34913684

RESUMEN

In this study, we demonstrated two deep-blue TADF emitters, BO-tCzPhICz and BO-tCzDICz, for solution-processable thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). They were synthesized by employing an organoboron acceptor and 9-(3,6-di-tert-butyl-9H-carbazol-9-yl)-5-phenyl-5,12-dihydroindolo[3,2-a]carbazole (tCzPhICz) and 12-(3,6-di-tert-butyl-9H-carbazol-9-yl)-15H-diindolo[2,3-b:1',2',3'-lm]carbazole (tCzDICz) as bulky aryl-annulated [3,2-a] carbazole donors, respectively. Both emitters showed sufficient solubility in organic solvents, narrow deep-blue emission, and small energy difference (ΔEST) between singlet and triplet states, which can be applied to solution-processable deep-blue TADF-OLEDs. Solution-processed OLEDs exploiting these TADF emitters displayed deep-blue electroluminescence with CIEy <0.1, and high external quantum efficiencies of 17.8 and 14.8% were observed for BO-tCzPhICz and BO-tCzDICz, respectively. The emitter bearing bulky ICz-based donating units shows highly promising potential for high-efficiency solution-processable deep-blue TADF-OLEDs.

18.
Polymers (Basel) ; 13(22)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34833204

RESUMEN

This study demonstrated the use of a thermally crosslinked polyimide (PI) for the liquid crystal (LC) alignment layer of an LC display (LCD) cell. Polyamic acid was prepared using 4,4'-oxydianiline (ODA) and 4,4'-(hexafluoroisopropylidene) diphthalic anhydride (6FDA). The 6FDA-ODA-based polyimide (PI) prepared by the thermal cyclic dehydration of the polyamic acid (PAA) was soluble in various polar solvents. After forming a thin film by mixing trifunctional epoxide [4-(oxiran-2-ylmethoxy)-N,N-bis(oxiran-2-ylmethyl)aniline] with the 6FDA-ODA-based PAA, it was confirmed that thermal curing at -110 °C caused an epoxy ring opening reaction, which could result in the formation of a networked polyimide not soluble in tetrahydrofuran. The crosslinked PI film showed a higher rigidity than the neat PI films, as measured by the elastic modulus. Furthermore, based on a dynamic mechanical analysis of the neat PI and crosslinked PI films, the glass transition temperatures (Tgs) were 217 and 339 °C, respectively, which provided further evidence of the formation of crosslinking by the addition of the epoxy reagent. After mechanical rubbing using these two PI films, an LC cell was fabricated using an anisotropic PI film as an LC alignment film. LC cells with crosslinked PI layers showed a high voltage holding ratio and low residual direct current voltage. This suggests that the crosslinked PI has good potential for use as an LC alignment layer material in advanced LCD technologies that require high performance and reliability.

19.
ACS Appl Mater Interfaces ; 13(41): 49076-49084, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34628848

RESUMEN

Three V-shaped host molecules with a cyclohexane linker were successfully synthesized for thermally activated delayed fluorescence organic light-emitting diodes (TADF-OLEDs). The unipolar host molecules, BBCzC and BTDC, contained two 9-phenyl-9H-3,9'-bicarbazole (PBCz) moieties and two 2,12-di-tert-butyl-7-phenyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene (PDBNA) moieties, respectively. BCzTC, a bipolar host molecule, consisted of a donor unit, PBCz, and an acceptor unit, PDBNA, connected by a cyclohexane linker. Three host molecules showed good solubility in various organic solvents, making them suitable for solution processing. Among the solution-processed green TADF-OLEDs using three host molecules and a green TADF emitter, the one with BCzTC showed the highest external quantum efficiency of up to 30% with a high power efficiency of 71 lm W-1 and a current efficiency of 102 cd A-1. Compared with BBCzC and BTDC, BCzTC exhibited a relatively high photoluminescence quantum yield (PLQY), an excellent balance in hole and electron transport properties in the emitting layer, and more efficient energy transfer to the emitter, giving such an excellent device performance.

20.
ACS Appl Mater Interfaces ; 13(14): 16754-16765, 2021 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-33793188

RESUMEN

Crosslinkable polymers have attracted tremendous attention in various fields of science and technology, owing to their potential utilization in applications requiring dimensional and morphological stability under thermal and mechanical stress. In this study, random terpolymers were successfully synthesized by introducing thiophene-based monomers bearing vinyl functional groups in the side-chain of the polymer donor (PBDBT-BV20) and polymer acceptor (N2200-TV10) structures. The physical properties of the blend films of PBDBT-BV20 and N2200-TV10 before and after thermal crosslinking were extensively investigated and compared to those of the homogeneous individual polymer films. The results revealed that a network polymer with donor and acceptor polymer chains, which can lock the internal morphology, could be achieved by inducing crosslinking between the vinyl groups in the mixed state of PBDBT-BV20 and N2200-TV10. In addition, the power conversion efficiency (PCE) of the polymer solar cells (PSCs) containing the blend films that were crosslinked by a two-step thermal annealing process was improved. The enhanced PCE could be attributed to the individual crystallization of PBDBT-BV20 and N2200-TV10 in the blend phase at 120 °C and then thermal crosslinking at 140 °C. In addition, the PSCs with the crosslinked blend film exhibited an excellent shelf-life of over 1200 h and a thermally stable PCE. Furthermore, the crosslinked blend film exhibited excellent mechanical stability under bending stress in flexible PSCs using plastic substrates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA