Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Int J Mol Sci ; 24(21)2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37958847

RESUMEN

Astrocytes and microglia, the most abundant glial cells in the central nervous system, are involved in maintaining homeostasis in the brain microenvironment and in the progression of various neurological disorders. Lipocalin-2 (LCN2) is a small secretory protein that can be transcriptionally upregulated via nuclear factor kappa B (NF-κB) signaling. It is synthesized and secreted by glial cells, resulting in either the restoration of damaged neural tissues or the induction of neuronal apoptosis in a context-dependent manner. It has recently been reported that when glial cells are under lipopolysaccharide-induced inflammatory stress, either reduced production or accelerated degradation of LCN2 can alleviate neurotoxicity. However, the regulatory mechanisms of LCN2 in glial cells are not yet fully understood. In this study, we used primary astroglial-enriched cells which produce LCN2 and found that the production of LCN2 could be reduced by sodium arsenite treatment. Surprisingly, the reduced LCN2 production was not due to the suppression of NF-κB signaling. Mild oxidative stress induced by sodium arsenite treatment activated antioxidant responses and downregulated Lcn2 expression without reducing the viability of astroglial-enriched cells. Intriguingly, reduced LCN2 production could not be achieved by simple activation of the nuclear factor erythroid-2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway in astroglial-enriched cells. Thus, it appears that mild oxidative stress, occurring in an Nrf2-independent manner, is required for the downregulation of Lcn2 expression. Taken together, our findings provide new insights into the regulatory mechanisms of LCN2 and suggest that mild oxidative stress may alter LCN2 homeostasis, even under neuroinflammatory conditions.


Asunto(s)
Factor 2 Relacionado con NF-E2 , FN-kappa B , Lipocalina 2/genética , Lipocalina 2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , FN-kappa B/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neuroglía/metabolismo , Estrés Oxidativo
2.
Gut ; 71(7): 1266-1276, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-34389621

RESUMEN

OBJECTIVE: Gastric cancer (GC) is a leading cause of cancer-related mortality. Although microbes besides Helicobacter pylori may also contribute to gastric carcinogenesis, wild-type germ-free (GF) mouse models investigating the role of human gastric microbiota in the process are not yet available. We aimed to evaluate the histopathological features of GF mouse stomachs transplanted with gastric microbiota from patients with different gastric disease states and their relationships with the microbiota. DESIGN: Microbiota profiles in corpus and antrum tissues and gastric fluid from 12 patients with gastric dysplasia or GC were analysed. Thereafter, biopsied corpus and antrum tissues and gastric fluid from patients (n=15 and n=12, respectively) with chronic superficial gastritis, intestinal metaplasia or GC were inoculated into 42 GF C57BL/6 mice. The gastric microbiota was analysed by amplicon sequencing. Histopathological features of mouse stomachs were analysed immunohistochemically at 1 month after inoculation. An independent set of an additional 15 GF mice was also analysed at 1 year. RESULTS: The microbial community structures of patients with dysplasia or GC in the corpus and antrum were similar. The gastric microbiota from patients with intestinal metaplasia or GC selectively colonised the mouse stomachs and induced premalignant lesions: loss of parietal cells and increases in inflammation foci, in F4/80 and Ki-67 expression, and in CD44v9/GSII lectin expression. Marked dysplastic changes were noted at 1 year post inoculation. CONCLUSION: Major histopathological features of premalignant changes are reproducible in GF mice transplanted with gastric microbiota from patients with intestinal metaplasia or GC. Our results suggest that GF mice are useful for analysing the causality of associations reported in human gastric microbiome studies.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Microbiota , Neoplasias Gástricas , Animales , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/patología , Humanos , Hiperplasia/patología , Metaplasia/patología , Ratones , Ratones Endogámicos C57BL , Neoplasias Gástricas/patología
3.
Gastroenterology ; 161(3): 953-967.e15, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34116028

RESUMEN

BACKGROUND & AIMS: WAP 4-disulfide core domain protein 2 (WFDC2), also known as human epididymis protein 4, is a small secretory protein that is highly expressed in fibrosis and human cancers, particularly in the ovaries, lungs, and stomach. However, the role of WFDC2 in carcinogenesis is not fully understood. The present study aimed to investigate the role of WFDC2 in gastric carcinogenesis with the use of preneoplastic metaplasia models. METHODS: Three spasmolytic polypeptide-expressing metaplasia (SPEM) models were established in both wild-type and Wfdc2-knockout mice with DMP-777, L635, and high-dose tamoxifen, respectively. To reveal the functional role of WFDC2, we performed transcriptomic analysis with DMP-777-treated gastric corpus specimens. RESULTS: Wfdc2-knockout mice exhibited remarkable resistance against oxyntic atrophy, SPEM emergence, and accumulation of M2-type macrophages in all 3 SPEM models. Transcriptomic analysis revealed that Wfdc2-knockout prevented the up-regulation of interleukin-33 (IL33) expression in the injured mucosal region of SPEM models. Notably, supplementation of recombinant WFDC2 induced IL33 production and M2 macrophage polarization, and ultimately promoted SPEM development. Moreover, long-term treatment with recombinant WFDC2 was able to induce SPEM development. CONCLUSIONS: WFDC2 expressed in response to gastric injury promotes SPEM through the up-regulation of IL33 expression. These findings provide novel insights into the role of WFDC2 in gastric carcinogenesis.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Mucosa Gástrica/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Interleucina-33/metabolismo , Lesiones Precancerosas/metabolismo , Neoplasias Gástricas/metabolismo , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/metabolismo , Animales , Atrofia , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Modelos Animales de Enfermedad , Mucosa Gástrica/ultraestructura , Perfilación de la Expresión Génica , Péptidos y Proteínas de Señalización Intercelular/genética , Interleucina-33/genética , Macrófagos/metabolismo , Metaplasia , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Transcriptoma , Regulación hacia Arriba , Proteína 2 de Dominio del Núcleo de Cuatro Disulfuros WAP/genética
4.
J Magn Reson Imaging ; 56(5): 1548-1556, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35353434

RESUMEN

BACKGROUND: Myelin water imaging (MWI) using MRI has been introduced as a method to quantify the integrity of myelin in vivo. However, the investigation of its potential to probe myelin changes has been limited. PURPOSE: To determine the myelin change using MWI in the corticospinal tract (CST) during the rehabilitation of stroke patients. STUDY TYPE: Longitudinal. POPULATION: A total of 24 stroke patients within 6 months from the onset (64.3 ± 16.1 years, 14 women, 10 men) and 10 healthy volunteers (27.0 ± 2.2 years, 2 women, 8 men). FIELD STRENGTH/SEQUENCE: Three-dimensional multiecho gradient echo sequence and diffusion-weighted echoplanar imaging sequence at 3 T. ASSESSMENT: The changes of myelin water fraction (MWF) and fractional anisotropy (FA) during rehabilitation were analyzed in the CST and other regions using tractography software and region of interest drawings by the radiologist. STATISTICAL TESTS: A paired t-test was performed to investigate the change of MRI metrics during rehabilitation. In addition, an independent two-sample t-test was performed to investigate the effects of different rehabilitation protocols. A P-value <0.05 was considered significant. RESULTS: In the CST, MWF significantly changed from 5.83 ± 0.91% to 6.23 ± 0.97% after rehabilitation while changes of FA (0.442 ± 0.038 to 0.443 ± 0.035) were not significant (P = 0.656). The rate of change in MWF and FA, which were 6.69% and 0.439% respectively, were significantly different. Other regions did not show significant changes (range of MWF change: -3.44% to -1.61%, range of FA change: -1.39% to 0.79%, and range of P-value: 0.144-0.761). Further analysis showed that those with additional robot-assisted rehabilitation had a significantly larger MWF change than those with conventional rehabilitation only (rate of change: 11.2% vs. 3.2%). DATA CONCLUSION: The feasibility of using MWI to monitor myelin content was demonstrated by showing the MWF changes during rehabilitation. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 2.


Asunto(s)
Vaina de Mielina , Accidente Cerebrovascular , Anisotropía , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Accidente Cerebrovascular/diagnóstico por imagen , Agua
5.
Surg Endosc ; 36(4): 2574-2581, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34013392

RESUMEN

BACKGROUND: The lesion detection rate of esophagogastroduodenoscopy (EGD) varies depending on the degree of experience of the endoscopist and anatomical blind spots. This study aimed to identify gaze patterns and blind spots by analyzing the endoscopist's gaze during real-time EGD. METHODS: Five endoscopists were enrolled in this study. The endoscopist's eye gaze tracked by an eye tracker was selected from the esophagogastric junction to the second portion of the duodenum without the esophagus during insertion and withdrawal, and then matched with photos. Gaze patterns were visualized as a gaze plot, blind spot detection as a heatmap, observation time (OT), fixation duration (FD), and FD-to-OT ratio. RESULTS: The mean OT and FD were 11.10 ± 11.14 min and 8.37 ± 9.95 min, respectively, and the FD-to-OT ratio was 72.5%. A total of 34.3% of the time was spent observing the antrum. When observing the body of the stomach, it took longer to observe the high body in the retroflexion view and the low-to-mid body in the forward view. CONCLUSIONS: It is necessary to minimize gaze distraction and observe the posterior wall in the retroflexion view. Our results suggest that eye-tracking techniques may be useful for future endoscopic training and education.


Asunto(s)
Tecnología de Seguimiento Ocular , Tracto Gastrointestinal Superior , Endoscopía Gastrointestinal , Fijación Ocular , Humanos
6.
Proc Natl Acad Sci U S A ; 116(35): 17419-17428, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31341090

RESUMEN

Viperin is an interferon (IFN)-inducible multifunctional protein. Recent evidence from high-throughput analyses indicates that most IFN-inducible proteins, including viperin, are intrinsically expressed in specific tissues; however, the respective intrinsic functions are unknown. Here we show that the intrinsic expression of viperin regulates adipose tissue thermogenesis, which is known to counter metabolic disease and contribute to the febrile response to pathogen invasion. Viperin knockout mice exhibit increased heat production, resulting in a reduction of fat mass, improvement of high-fat diet (HFD)-induced glucose tolerance, and enhancement of cold tolerance. These thermogenic phenotypes are attributed to an adipocyte-autonomous mechanism that regulates fatty acid ß-oxidation. Under an HFD, viperin expression is increased, and its function is enhanced. Our findings reveal the intrinsic function of viperin as a novel mechanism regulating thermogenesis in adipose tissues, suggesting that viperin represents a molecular target for thermoregulation in clinical contexts.


Asunto(s)
Tejido Adiposo/metabolismo , Regulación de la Expresión Génica , Proteínas/genética , Termogénesis/genética , Adipocitos/metabolismo , Animales , Metabolismo Energético/genética , Masculino , Ratones , Ratones Noqueados
7.
Angew Chem Int Ed Engl ; 61(17): e202200808, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35174598

RESUMEN

An effective strategy to engineer selective photodynamic agents to surmount bacterial-infected diseases, especially Gram-positive bacteria remains a great challenge. Herein, we developed two examples of compounds for a proof-of-concept study where reactive differences in reactive oxygen species (ROS) can induce selective ablation of Gram-positive bacteria. Sulfur-replaced phenoxazinium (NBS-N) mainly generates a superoxide anion radical capable of selectively killing Gram-positive bacteria, while selenium-substituted phenoxazinium (NBSe-N) has a higher generation of singlet oxygen that can kill both Gram-positive and Gram-negative bacteria. This difference was further evidenced by bacterial fluorescence imaging and morphological changes. Moreover, NBS-N can also successfully heal the Gram-positive bacteria-infected wounds in mice. We believe that such reactive differences may pave a general way to design selective photodynamic agents for ablating Gram-positive bacteria-infected diseases.


Asunto(s)
Bacterias Grampositivas , Fotoquimioterapia , Animales , Antibacterianos/farmacología , Bacterias , Bacterias Gramnegativas , Ratones , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/farmacología , Especies Reactivas de Oxígeno
8.
J Struct Biol ; 213(1): 107694, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33418033

RESUMEN

Heterotrimeric guanine nucleotide-binding proteins (G proteins) are composed of α, ß, and γ subunits. Gα switches between guanosine diphosphate (GDP)-bound inactive and guanosine triphosphate (GTP)-bound active states, and Gßγ interacts with the GDP-bound state. The GDP-binding regions are composed of two sites: the phosphate-binding and guanine-binding regions. The turnover of GDP and GTP is induced by guanine nucleotide-exchange factors (GEFs), including G protein-coupled receptors (GPCRs), Ric8A, and GIV/Girdin. However, the key structural factors for stabilizing the GDP-bound state of G proteins and the direct structural event for GDP release remain unclear. In this study, we investigated structural factors affecting GDP release by introducing point mutations in selected, conserved residues in Gαi3. We examined the effects of these mutations on the GDP/GTP turnover rate and the overall conformation of Gαi3 as well as the binding free energy between Gαi3 and GDP. We found that dynamic changes in the phosphate-binding regions are an immediate factor for the release of GDP.


Asunto(s)
Proteínas de Unión al GTP/química , Guanosina Difosfato/química , Sitios de Unión/fisiología , Factores de Intercambio de Guanina Nucleótido/química , Guanosina Trifosfato/química , Unión Proteica/fisiología , Conformación Proteica
9.
J Pathol ; 249(2): 227-240, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144312

RESUMEN

Rab25 can function as both a tumor suppressor and a tumor promoter across different tissues. This study sought to clarify the role of Rab25 as a tumor suppressor in skin squamous cell carcinoma (SCC). Rab25 loss was closely associated with neoplastic transition in both humans and mice. Rab25 loss was well correlated with increased cell proliferation and poor differentiation in human SCC. While Rab25 knockout (KO) in mice did not induce spontaneous tumor formation, it did significantly accelerate tumor generation and promote malignant transformation in a mouse two-stage skin carcinogenesis model. Xenografting of a Rab25-deficient human keratinocyte cell line, HaCaT, also elicited neoplastic transformation. Notably, Rab25 deficiency led to dysregulation of integrins ß1, ß4, and α6, which matched well with increased epidermal proliferation and impaired desmosome-tight junction formation. Rab25 deficiency induced impairment of integrin recycling, leading to the improper expression of integrins. In line with this, significant attenuation of integrin ß1, ß4, and α6 expression was identified in human SCCs where Rab25 was deficient. Collectively, these results suggest that loss of Rab25 promotes the development and neoplastic transition of SCC through dysregulation of integrin trafficking. © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Carcinoma de Células Escamosas/metabolismo , Integrinas/metabolismo , Queratinocitos/metabolismo , Proteínas/metabolismo , Neoplasias Cutáneas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Animales , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Humanos , Integrinas/genética , Queratinocitos/patología , Ratones de la Cepa 129 , Ratones Noqueados , Transporte de Proteínas , Proteínas/genética , Transducción de Señal , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Carga Tumoral , Proteínas Supresoras de Tumor/genética , Proteínas de Unión al GTP rab/deficiencia , Proteínas de Unión al GTP rab/genética
10.
J Am Chem Soc ; 141(3): 1366-1372, 2019 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-30565924

RESUMEN

Albumin is a promising candidate as a biomarker for potential disease diagnostics and has been extensively used as a drug delivery carrier for decades. In these two directions, many albumin-detecting probes and exogenous albumin-based nanocomposite delivery systems have been developed. However, there are only a few cases demonstrating the specific interactions of exogenous probes with albumin in vivo, and nanocomposite delivery systems usually suffer from tedious fabrication processes and potential toxicity of the complexes. Herein, we demonstrate a facile "one-for-all" switchable nanotheranostic (NanoPcS) for both albumin detection and cancer treatment. In particular, the in vivo specific binding between albumin and PcS, arising from the disassembly of injected NanoPcS, is confirmed using an inducible transgenic mouse system. Fluorescence imaging and antitumor tests on different tumor models suggest that NanoPcS has superior tumor-targeting ability and the potential for time-modulated, activatable photodynamic therapy.


Asunto(s)
Colorantes Fluorescentes/uso terapéutico , Nanopartículas/uso terapéutico , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Albúmina Sérica/metabolismo , Animales , Línea Celular Tumoral , Femenino , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Humanos , Indoles/síntesis química , Indoles/metabolismo , Indoles/uso terapéutico , Masculino , Ratones Transgénicos , Nanopartículas/química , Nanopartículas/metabolismo , Neoplasias/patología , Fotoquimioterapia , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/metabolismo , Embarazo , Unión Proteica , Nanomedicina Teranóstica/métodos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Am J Pathol ; 188(12): 2912-2923, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30248341

RESUMEN

Leucine-rich repeats and immunoglobulin-like domains (LRIG)-1 is a transmembrane protein that antagonizes epidermal growth factor receptor signaling in epithelial tissues. LRIG1 is down-regulated in various epithelial cancers, including bladder, breast, and colorectal cancer, suggesting that it functions as a tumor suppressor. However, its role in gastric carcinogenesis is not well understood. Here, we investigated the changes in LRIG1 expression during the stages of gastric cancer. We used a DMP-777-induced spasmolytic polypeptide-expressing metaplasia mouse model and a tissue array of human gastric cancer lesions. The effects of LRIG1 knockdown were also assessed using the human gastric cancer cell line SNU638 in a xenograft model. LRIG1 expression varied over the course of gastric carcinogenesis, increasing in spasmolytic polypeptide-expressing metaplasia lesions but disappearing in intestinal metaplasia and cancer lesions, and the increase was concurrent with the up-regulation of epidermal growth factor receptor. In addition, LRIG1 knockdown promoted the tumorigenic potential in vitro, which was manifested as increased proliferation, invasiveness, and migration as well as increased tumor size in vivo in the xenograft model. Furthermore, LRIG1 expression was determined to be a positive prognostic biomarker for the survival of gastric cancer patients. Collectively, our findings indicate that LRIG1 expression is closely related wto gastric carcinogenesis and may play a vital role as a tumor suppressor through the modulation of epidermal growth factor receptor activity.


Asunto(s)
Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Glicoproteínas de Membrana/metabolismo , Metaplasia/patología , Proteínas del Tejido Nervioso/metabolismo , Neoplasias Gástricas/patología , Animales , Apoptosis , Estudios de Casos y Controles , Proliferación Celular , Receptores ErbB/genética , Humanos , Masculino , Glicoproteínas de Membrana/genética , Metaplasia/genética , Metaplasia/metabolismo , Ratones , Ratones Desnudos , Estadificación de Neoplasias , Proteínas del Tejido Nervioso/genética , Estómago/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Tasa de Supervivencia , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
12.
Int J Mol Sci ; 20(17)2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31480681

RESUMEN

The main function of the skin is to protect the body from the external environment. The barrier function of the skin is mainly provided by the stratum corneum, which consists of corneocytes bound with the corneodesmosomes and lamellar lipids. Skin barrier proteins like loricrin and filaggrin also contribute to the skin barrier function. In various skin diseases, skin barrier dysfunction is a common symptom, and skin irritants like detergents or surfactants could also perturb skin barrier function. Many efforts have been made to develop strategies to improve skin barrier function. Here, we investigated whether the microfluidized lysates of Lactobacillus rhamnosus (LR), one of the most widely used probiotic species for various health benefits, may improve the skin barrier function in a reconstructed human epidermis, Keraskin™. Application of LR lysate on Keraskin™ increased the expression of tight junction proteins; claudin 1 and occludin as determined by immunofluorescence analysis, and skin barrier proteins; loricrin and filaggrin as determined by immunohistochemistry and immunofluorescence analysis and qPCR. Also, the cytotoxicity of a skin irritant, sodium lauryl sulfate (SLS), was alleviated by the pretreatment of LR lysate. The skin barrier protective effects of LR lysate could be further demonstrated by the attenuation of SLS-enhanced dye-penetration. LR lysate also attenuated the destruction of desmosomes after SLS treatment. Collectively, we demonstrated that LR lysate has protective effects on the skin barrier, which could expand the utility of probiotics to skin-moisturization ingredients.


Asunto(s)
Epidermis/efectos de los fármacos , Lacticaseibacillus rhamnosus/metabolismo , Modelos Biológicos , Probióticos/farmacología , Administración Tópica , Anticuerpos/farmacología , Biomarcadores/metabolismo , Muerte Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Desmosomas/efectos de los fármacos , Desmosomas/metabolismo , Desmosomas/ultraestructura , Epidermis/patología , Proteínas Filagrina , Humanos , Proteínas de Filamentos Intermediarios/metabolismo , Irritantes/toxicidad , Proteínas de la Membrana/metabolismo , Permeabilidad , Rodaminas/metabolismo , Proteínas de Uniones Estrechas/metabolismo
13.
Int J Mol Sci ; 20(24)2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31817535

RESUMEN

Peroxidasin (PXDN) is a unique peroxidase containing extracellular matrix motifs and stabilizes collagen IV networks by forming sulfilimine crosslinks. PXDN gene knockout in Caenorhabditis elegans (C. elegans) and Drosophila results in the demise at the embryonic and larval stages. PXDN mutations lead to severe eye disorders, including microphthalmia, cataract, glaucoma, and anterior segment dysgenesis in humans and mice. To investigate how PXDN loss of function affects organ development, we generated Pxdn knockout mice by deletion of exon 1 and its 5' upstream sequences of the Pxdn gene using the CRISPR/Cas9 system. Loss of both PXDN expression and collagen IV sulfilimine cross-links was detected only in the homozygous mice, which showed completely or almost closed eyelids with small eyes, having no apparent external morphological defects in other organs. In histological analysis of eye tissues, the homozygous mice had extreme defects in eye development, including no eyeballs or drastically disorganized eye structures, whereas the heterozygous mice showed normal eye structure. Visual function tests also revealed no obvious functional abnormalities in the eyes between heterozygous mice and wild-type mice. Thus, these results suggest that PXDN activity is essential in eye development, and also indicate that a single allele of Pxdn gene is sufficient for eye-structure formation and normal visual function.


Asunto(s)
Anoftalmos , Ojo/crecimiento & desarrollo , Eliminación de Gen , Peroxidasas/deficiencia , Animales , Anoftalmos/genética , Anoftalmos/metabolismo , Anoftalmos/patología , Sistemas CRISPR-Cas , Colágeno Tipo IV/genética , Colágeno Tipo IV/metabolismo , Ojo/patología , Ratones , Ratones Noqueados , Peroxidasas/metabolismo , Visión Ocular/genética
14.
Angew Chem Int Ed Engl ; 56(5): 1278-1282, 2017 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-28000315

RESUMEN

p53 is an important tumor-suppressor protein deactivation of which by mdm2 results in cancers. A SUMO-specific protease 4 (SUSP4) was shown to rescue p53 from mdm2-mediated deactivation, but the mechanism is unknown. The discovery by NMR spectroscopy of a "p53 rescue motif" in SUSP4 that disrupts p53-mdm2 binding is presented. This 29-residue motif is pre-populated with two transient helices connected by a hydrophobic linker. The helix at the C-terminus binds to the well-known p53-binding pocket in mdm2 whereas the N-terminal helix serves as an affinity enhancer. The hydrophobic linker binds to a previously unidentified hydrophobic crevice in mdm2. Overall, SUSP4 appears to use two synergizing modules, the p53 rescue motif described here and a globular-structured SUMO-binding catalytic domain, to stabilize p53. A p53 rescue motif peptide exhibits an anti-tumor activity in cancer cell lines expressing wild-type p53. A pre-structures motif in the intrinsically disordered proteins is thus important for target recognition.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cisteína Endopeptidasas/química , Humanos , Simulación de Dinámica Molecular , Mutagénesis , Péptidos/farmacología , Unión Proteica , Proteínas Proto-Oncogénicas c-mdm2/química , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/genética
15.
Cell Mol Gastroenterol Hepatol ; 16(3): 411-429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37207801

RESUMEN

BACKGROUND & AIMS: Fibrosis development in ulcerative colitis is associated directly with the severity of mucosal inflammation, which increases the risk of colorectal cancer. The transforming growth factor-ß (TGF-ß) signaling pathway is an important source of tissue fibrogenesis, which is stimulated directly by reactive oxygen species produced from nicotinamide adenine dinucleotide phosphate oxidases (NOX). Among members of the NOX family, NOX4 expression is up-regulated in patients with fibrostenotic Crohn's disease (CD) and in dextran sulfate sodium (DSS)-induced murine colitis. The aim of this study was to determine whether NOX4 plays a role in fibrogenesis during inflammation in the colon using a mouse model. METHODS: Acute and recovery models of colonic inflammation were performed by DSS administration to newly generated Nox4-/- mice. Pathologic analysis of colon tissues was performed, including detection of immune cells, proliferation, and fibrotic and inflammatory markers. RNA sequencing was performed to detect differentially expressed genes between Nox4-/- and wild-type mice in both the untreated and DSS-treated conditions, followed by functional enrichment analysis to explore the molecular mechanisms contributing to pathologic differences during DSS-induced colitis and after recovery. RESULTS: Nox4-/- mice showed increased endogenous TGF-ß signaling in the colon, increased reactive oxygen species levels, intensive inflammation, and an increased fibrotic region after DSS treatment compared with wild-type mice. Bulk RNA sequencing confirmed involvement of canonical TGF-ß signaling in fibrogenesis of the DSS-induced colitis model. Up-regulation of TGF-ß signaling affects collagen activation and T-cell lineage commitment, increasing the susceptibility for inflammation. CONCLUSIONS: Nox4 protects against injury and plays a crucial role in fibrogenesis in DSS-induced colitis through canonical TGF-ß signaling regulation, highlighting a new treatment target.


Asunto(s)
Colitis , Animales , Ratones , Sulfato de Dextran/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Colitis/patología , Fibrosis , Factor de Crecimiento Transformador beta , Inflamación , NADPH Oxidasa 4/genética
16.
17.
Front Immunol ; 14: 1290191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38035074

RESUMEN

Macrophages are highly heterogeneous immune cells with a role in maintaining tissue homeostasis, especially in activating the defense response to bacterial infection. Using flow cytometric and single-cell RNA-sequencing analyses of peritoneal cells, we here show that small peritoneal macrophage and immature macrophage populations are enriched in histamine-deficient (Hdc -/-) mice, characterized by a CD11bmiF4/80loCCR2+MHCIIhi and CD11bloF4/80miTHBS1+IL-1α+ phenotype, respectively. Molecular characterization revealed that immature macrophages represent an abnormally differentiated form of large peritoneal macrophages with strong inflammatory properties. Furthermore, deficiency in histamine signaling resulted in significant impairment of the phagocytic activity of peritoneal macrophage populations, conferring high susceptibility to bacterial infection. Collectively, this study reveals the importance of histamine signaling in macrophage differentiation at the molecular level to maintain tissue homeostasis, offering a potential therapeutic target for bacterial infection-mediated diseases.


Asunto(s)
Histamina , Macrófagos , Ratones , Animales , Macrófagos Peritoneales , Diferenciación Celular , Fagocitos
18.
Cell Mol Gastroenterol Hepatol ; 15(1): 213-236, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36167263

RESUMEN

BACKGROUND & AIMS: Histamine in the stomach traditionally is considered to regulate acid secretion but also has been reported to participate in macrophage differentiation, which plays an important role in tissue homeostasis. Therefore, this study aimed to uncover the precise role of histamine in mediating macrophage differentiation and in maintaining stomach homeostasis. METHODS: Here, we expand on this role using histidine decarboxylase knockout (Hdc-/-) mice with hypertrophic gastropathy. In-depth in vivo studies were performed in Hdc-/- mice, germ-free Hdc-/- mice, and bone-marrow-transplanted Hdc-/- mice. The stomach macrophage populations and function were characterized by flow cytometry. To identify stomach macrophages and find the new macrophage population, we performed single-cell RNA sequencing analysis on Hdc+/+ and Hdc-/- stomach tissues. RESULTS: Single-cell RNA sequencing and flow cytometry of the stomach cells of Hdc-/- mice showed alterations in the ratios of 3 distinct tissue macrophage populations (F4/80+Il1bhigh, F4/80+CD93+, and F4/80-MHC class IIhighCD74high). Tissue macrophages of the stomachs of Hdc-/- mice showed impaired phagocytic activity, increasing the bacterial burden of the stomach and attenuating hypertrophic gastropathy in germ-free Hdc-/- mice. The transplantation of bone marrow cells of Hdc+/+ mice to Hdc-/- mice recovered the normal differentiation of stomach macrophages and relieved the hypertrophic gastropathy of Hdc-/- mice. CONCLUSIONS: This study showed the importance of histamine signaling in tissue macrophage differentiation and maintenance of gastric homeostasis through the suppression of bacterial overgrowth in the stomach.


Asunto(s)
Diferenciación Celular , Histamina , Macrófagos , Estómago , Animales , Ratones , Histamina/fisiología , Histidina Descarboxilasa/genética , Estómago/microbiología , Síndrome del Asa Ciega , Ratones Noqueados
19.
Artículo en Inglés | MEDLINE | ID: mdl-36078338

RESUMEN

This study investigated the efficacy and safety of convalescent plasma (CP) transfusion against the coronavirus disease 2019 (COVID-19) via a systematic review and meta-analysis of randomized controlled trials (RCTs). A total of 5467 articles obtained from electronic databases were assessed; however, only 34 RCTs were eligible after manually screening and eliminating unnecessary studies. The beneficial effect was addressed by assessing the risk ratio (RR) and standardized mean differences (SMDs) of the meta-analysis. It was demonstrated that CP therapy is not effective in improving clinical outcomes, including reducing mortality with an RR of 0.88 [0.76; 1.03] (I2 = 68% and p = 0.10) and length of hospitalization with SMD of -0.47 [-0.95; 0.00] (I2 = 99% and p = 0.05). Subgroup analysis provided strong evidence that CP transfusion does not significantly reduce all-cause mortality compared to standard of care (SOC) with an RR of 1.01 [0.99; 1.03] (I2 = 70% and p = 0.33). In addition, CP was found to be safe for and well-tolerated by COVID-19 patients as was the SOC in healthcare settings. Overall, the results suggest that CP should not be applied outside of randomized trials because of less benefit in improving clinical outcomes for COVID-19 treatment.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , COVID-19 , COVID-19/terapia , Humanos , Inmunización Pasiva/métodos , Ensayos Clínicos Controlados Aleatorios como Asunto , Sueroterapia para COVID-19
20.
Biomaterials ; 286: 121580, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635895

RESUMEN

Multidrug-resistant (MDR) gram-positive bacteria are an inevitable source of infection for hospitalized patients and one of the reasons for the increased proportion of severe diseases. Therefore, constructing smart agents for specific and effective combating infections in vivo caused by MDR gram-positive strains is very urgent. Herein, we reported a structure-oriented design strategy (SODS) to reasonably construct an organic photo-antimicrobial near-infrared (NIR) AIEgen BDPTV equipped with a phenylboronic acid moiety, which could be bound to the thick peptidoglycan layer of MDR gram-positive bacteria, resulting in a tight distribution with the cell wall in a confined space. Compared to the contrast compounds DQVTA and DPTVN, upon photoirradiation of AIEgen BDPTV, the generation of abundant and highly toxic reactive oxygen species (ROS) irreversibly destroys MDR gram-positive bacteria through photodynamic therapy, which is better than commercial photosensitizers (including methylene blue, chlorin e6, and protoporphyrin IX) and antibiotic (cefoxitin). As a proof of concept, in vitro experimental results showed that methicillin-resistant Staphylococcus aureus (MRSA) were completely killed using AIEgen BDPTV. More importantly, AIEgen BDPTV was capable of successfully combating MRSA-infected wounds of mice, but not Escherichia coli (E. coli)-infected wounds. We hope that this strategy could provide a new method to design powerful AIEgens to avoid the overuse and misuse of antibiotics.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Bacteriana Múltiple , Escherichia coli , Humanos , Ratones , Fármacos Fotosensibilizantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA