Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Exp Bot ; 75(18): 5641-5654, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-38829345

RESUMEN

Sodium (Na+) is a beneficial element for most plants and may replace potassium (K+) in osmoregulatory process to a certain extent, increasing plant water use efficiency. Thus, understanding coordinated mechanisms underlying the combined use of K+ and Na+ in tree drought tolerance is a key challenge for forestry in dealing with productivity and water limitations. A pot experiment with three ratios of K/Na (K-supplied, partial K replacement by Na, and K-deficient plants) and two water regimes, well-watered (W+) and water-stressed (W-), was conducted on saplings of two Eucalyptus species with contrasting drought sensitivities. We evaluated the point of stomatal closure (Pgs90), xylem water potential at 12, 50, and 88% embolized xylem area (P12, P50, P88), hydraulic safety margin, leaf gas exchange (A, E, gs, and dark respiration), pre-dawn and midday leaf water potential (ΨPD and ΨMD), long-term water use efficiency (WUEL) and total dry mass. Partial K replacement by Na increased leaf gas exchange, WUEL, and total dry mass, while Pgs90, P12, P50, P88, and ΨMD decreased (were more negative), compared with plants exclusively supplied with K and K-deficient plants of both species. Fertilized plants had narrower hydraulic safety margins than K-deficient plants, indicating that these Eucalyptus species adopt the functional adaptive strategy of operating close to their hydraulic limits to maximize carbon uptake while increasing the risk of hydraulic failure under drought stress.


Asunto(s)
Sequías , Eucalyptus , Potasio , Sodio , Xilema , Eucalyptus/fisiología , Potasio/metabolismo , Xilema/fisiología , Xilema/metabolismo , Sodio/metabolismo , Fertilizantes/análisis , Agua/metabolismo
2.
Nature ; 558(7711): 531-539, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29950621

RESUMEN

Severe droughts have caused widespread tree mortality across many forest biomes with profound effects on the function of ecosystems and carbon balance. Climate change is expected to intensify regional-scale droughts, focusing attention on the physiological basis of drought-induced tree mortality. Recent work has shown that catastrophic failure of the plant hydraulic system is a principal mechanism involved in extensive crown death and tree mortality during drought, but the multi-dimensional response of trees to desiccation is complex. Here we focus on the current understanding of tree hydraulic performance under drought, the identification of physiological thresholds that precipitate mortality and the mechanisms of recovery after drought. Building on this, we discuss the potential application of hydraulic thresholds to process-based models that predict mortality.


Asunto(s)
Sequías , Estrés Fisiológico/fisiología , Árboles/fisiología , Aclimatación/fisiología , Desastres Naturales , Árboles/anatomía & histología , Árboles/genética , Agua/metabolismo , Agua/fisiología , Xilema/metabolismo
3.
Ecol Lett ; 26(11): 1829-1839, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37807917

RESUMEN

Tropical rainforest woody plants have been thought to have uniformly low resistance to hydraulic failure and to function near the edge of their hydraulic safety margin (HSM), making these ecosystems vulnerable to drought; however, this may not be the case. Using data collected at 30 tropical forest sites for three key traits associated with drought tolerance, we show that site-level hydraulic diversity of leaf turgor loss point, resistance to embolism (P50 ), and HSMs is high across tropical forests and largely independent of water availability. Species with high HSMs (>1 MPa) and low P50 values (< -2 MPa) are common across the wet and dry tropics. This high site-level hydraulic diversity, largely decoupled from water stress, could influence which species are favoured and become dominant under a drying climate. High hydraulic diversity could also make these ecosystems more resilient to variable rainfall regimes.


Asunto(s)
Ecosistema , Árboles , Clima Tropical , Bosques , Madera , Sequías , Hojas de la Planta , Xilema
4.
New Phytol ; 237(4): 1256-1269, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36366950

RESUMEN

Fuel moisture content (FMC) is a crucial driver of forest fires in many regions world-wide. Yet, the dynamics of FMC in forest canopies as well as their physiological and environmental determinants remain poorly understood, especially under extreme drought. We embedded a FMC module in the trait-based, plant-hydraulic SurEau-Ecos model to provide innovative process-based predictions of leaf live fuel moisture content (LFMC) and canopy fuel moisture content (CFMC) based on leaf water potential ( ψ Leaf ). SurEau-Ecos-FMC relies on pressure-volume (p-v) curves to simulate LFMC and vulnerability curves to cavitation to simulate foliage mortality. SurEau-Ecos-FMC accurately reproduced ψ Leaf and LFMC dynamics as well as the occurrence of foliage mortality in a Mediterranean Quercus ilex forest. Several traits related to water use (leaf area index, available soil water, and transpiration regulation), vulnerability to cavitation, and p-v curves (full turgor osmotic potential) had the greatest influence on LFMC and CFMC dynamics. As the climate gets drier, our results showed that drought-induced foliage mortality is expected to increase, thereby significantly decreasing CFMC. Our results represent an important advance in our capacity to understand and predict the sensitivity of forests to wildfires.


Asunto(s)
Sequías , Incendios Forestales , Bosques , Árboles/fisiología , Hojas de la Planta/fisiología , Agua/fisiología
5.
New Phytol ; 235(1): 94-110, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35363880

RESUMEN

Predicting species-level responses to drought at the landscape scale is critical to reducing uncertainty in future terrestrial carbon and water cycle projections. We embedded a stomatal optimisation model in the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model and parameterised the model for 15 canopy dominant eucalypt tree species across South-Eastern Australia (mean annual precipitation range: 344-1424 mm yr-1 ). We conducted three experiments: applying CABLE to the 2017-2019 drought; a 20% drier drought; and a 20% drier drought with a doubling of atmospheric carbon dioxide (CO2 ). The severity of the drought was highlighted as for at least 25% of their distribution ranges, 60% of species experienced leaf water potentials beyond the water potential at which 50% of hydraulic conductivity is lost due to embolism. We identified areas of severe hydraulic stress within-species' ranges, but we also pinpointed resilience in species found in predominantly semiarid areas. The importance of the role of CO2 in ameliorating drought stress was consistent across species. Our results represent an important advance in our capacity to forecast the resilience of individual tree species, providing an evidence base for decision-making around the resilience of restoration plantings or net-zero emission strategies.


Asunto(s)
Sequías , Árboles , Dióxido de Carbono , Hojas de la Planta/fisiología , Agua/fisiología
6.
Plant Cell Environ ; 45(4): 1187-1203, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34985807

RESUMEN

Drought-induced tree mortality may increase with ongoing climate change. Unraveling the links between stem hydraulics and mortality thresholds, and the effects of intraspecific variation, remain important unresolved issues. We conducted a water manipulation experiment in a rain-out shelter, using four provenances of Schima superba originating from a gradient of annual precipitation (1124-1796 mm) and temperature (16.4-22.4°C). Seedlings were droughted to three levels of percentage loss of hydraulic conductivity (i.e., P50 , P88  and P99) and subsequently rewatered to field capacity for 30 days; traits related to water and carbon relations were measured. The lethal water potential associated with incipient mortality was between P50 and P88 . Seedlings exhibited similar drought responses in xylem water potential, hydraulic conductivity and gas exchange. Upon rehydration, patterns of gas exchange differed among provenances but were not related to the climate at the origin. The four provenances exhibited a similar degree of stem hydraulic recovery, which was correlated with the magnitude of antecedent drought and stem soluble sugar at the end of the drought. Results suggest that there were intraspecific differences in the capacity of S. superba seedlings for carbon assimilation during recovery, indicating a decoupling between gas exchange recovery and stem hydraulics across provenances.


Asunto(s)
Sequías , Árboles , Carbono , Hojas de la Planta/fisiología , Plantones , Árboles/fisiología , Agua/fisiología , Xilema/fisiología
7.
Plant Cell Environ ; 45(4): 1216-1228, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119114

RESUMEN

The mechanisms by which woody plants recover xylem hydraulic capacity after drought stress are not well understood, particularly with regard to the role of embolism refilling. We evaluated the recovery of xylem hydraulic capacity in young Eucalyptus saligna plants exposed to cycles of drought stress and rewatering. Plants were exposed to moderate and severe drought stress treatments, with recovery monitored at time intervals from 24 h to 6 months after rewatering. The percentage loss of xylem vessels due to embolism (PLV) was quantified at each time point using microcomputed tomography with stem water potential (Ψx ) and canopy transpiration (Ec ) measured before scans. Plants exposed to severe drought stress suffered high levels of embolism (47.38% ± 10.97% PLV) and almost complete canopy loss. No evidence of embolism refilling was observed at 24 h, 1 week, or 3 weeks after rewatering despite rapid recovery in Ψx . Recovery of hydraulic capacity was achieved over a 6-month period by growth of new xylem tissue, with canopy leaf area and Ec recovering over the same period. These findings indicate that E. saligna recovers slowly from severe drought stress, with potential for embolism to persist in the xylem for many months after rainfall events.


Asunto(s)
Sequías , Eucalyptus , Hojas de la Planta , Agua , Microtomografía por Rayos X , Xilema
8.
Plant Cell Environ ; 45(6): 1631-1646, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35319101

RESUMEN

Determining the relationship between reductions in stomatal conductance (gs ) and leaf water transport during dehydration is key to understanding plant drought responses. While numerous studies have analysed the hydraulic function of woody species, minimal research has been conducted on grasses. Here, we sought to characterize hydraulic vulnerability in five widely-occurring pasture grasses (including both C3 and C4 grasses) and determine whether reductions in gs and leaf hydraulic conductance (Kleaf ) during dehydration could be attributed to xylem embolism. Using the optical vulnerability (OV) technique, we found that all species were highly resistant to xylem embolism when compared to other herbaceous angiosperms, with 50% xylem embolism (PX50 ) occurring at xylem pressures ranging from -4.4 to -6.1 MPa. We observed similar reductions in gs and Kleaf under mild water stress for all species, occurring well before PX50 . The onset of xylem embolism (PX12 ) occurred consistently after stomatal closure and 90% reduction of Kleaf . Our results suggest that factors other than xylem embolism are responsible for the majority of reductions in gs and Kleaf during drought and reductions in the productivity of pasture species under moderate drought may not be driven by embolism.


Asunto(s)
Sequías , Embolia , Deshidratación , Hojas de la Planta/fisiología , Poaceae , Xilema/fisiología
9.
Plant Cell Environ ; 45(7): 2037-2061, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35394651

RESUMEN

Leaf water potential (ψleaf ), typically measured using the pressure chamber, is the most important metric of plant water status, providing high theoretical value and information content for multiple applications in quantifying critical physiological processes including drought responses. Pressure chamber measurements of ψleaf (ψleafPC ) are most typical, yet, the practical complexity of the technique and of the underlying theory has led to ambiguous understanding of the conditions to optimize measurements. Consequently, specific techniques and precautions diversified across the global research community, raising questions of reliability and repeatability. Here, we surveyed specific methods of ψleafPC from multiple laboratories, and synthesized experiments testing common assumptions and practices in ψleafPC for diverse species: (i) the need for equilibration of previously transpiring leaves; (ii) leaf storage before measurement; (iii) the equilibration of ψleaf for leaves on bagged branches of a range of dehydration; (iv) the equilibration of ψleaf across the lamina for bagged leaves, and the accuracy of measuring leaves with artificially 'elongated petioles'; (v) the need in ψleaf measurements for bagging leaves and high humidity within the chamber; (vi) the need to avoid liquid water on leaf surfaces; (vii) the use of 'pulse' pressurization versus gradual pressurization; and (viii) variation among experimenters in ψleafPC determination. Based on our findings we provide a best practice protocol to maximise accuracy, and provide recommendations for ongoing species-specific tests of important assumptions in future studies.


Asunto(s)
Hojas de la Planta , Agua , Sequías , Hojas de la Planta/fisiología , Reproducibilidad de los Resultados , Agua/fisiología
10.
Ann Bot ; 130(3): 431-444, 2022 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-35420657

RESUMEN

BACKGROUND AND AIMS: Hydraulic failure is considered a main cause of drought-induced forest mortality. Yet, we have a limited understanding of how the varying intensities and long time scales of natural droughts induce and propagate embolism within the xylem. METHODS: X-ray computed tomography (microCT) images were obtained from different aged branch xylem to study the number, size and spatial distribution of in situ embolized conduits among three dominant tree species growing in a woodland community. KEY RESULTS: Among the three studied tree species, those with a higher xylem vulnerability to embolism (higher water potential at 50 % loss of hydraulic conductance; P50) were more embolized than species with lower P50. Within individual stems, the probability of embolism was independent of conduit diameter but associated with conduit position. Rather than the occurrence of random or radial embolism, we observed circumferential clustering of high and low embolism density, suggesting that embolism spreads preferentially among conduits of the same age. Older xylem also appeared more likely to accumulate embolisms than young xylem, but there was no pattern suggesting that branch tips were more vulnerable to cavitation than basal regions. CONCLUSIONS: The spatial analysis of embolism occurrence in field-grown trees suggests that embolism under natural drought probably propagates by air spreading from embolized into neighbouring conduits in a circumferential pattern. This pattern offers the possibility to understand the temporal aspects of embolism occurrence by examining stem cross-sections.


Asunto(s)
Sequías , Embolia , Bosques , Probabilidad , Agua , Xilema
11.
Ecol Lett ; 24(11): 2350-2363, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34409716

RESUMEN

Hydraulic failure caused by severe drought contributes to aboveground dieback and whole-plant death. The extent to which dieback or whole-plant death can be predicted by plant hydraulic traits has rarely been tested among species with different leaf habits and/or growth forms. We investigated 19 hydraulic traits in 40 woody species in a tropical savanna and their potential correlations with drought response during an extreme drought event during the El Niño-Southern Oscillation in 2015. Plant hydraulic trait variation was partitioned substantially by leaf habit but not growth form along a trade-off axis between traits that support drought tolerance versus avoidance. Semi-deciduous species and shrubs had the highest branch dieback and top-kill (complete aboveground death) among the leaf habits or growth forms. Dieback and top-kill were well explained by combining hydraulic traits with leaf habit and growth form, suggesting integrating life history traits with hydraulic traits will yield better predictions.


Asunto(s)
Sequías , Agua , Hábitos , Hojas de la Planta , Árboles
12.
New Phytol ; 230(2): 497-509, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33452823

RESUMEN

Adaptation to drought involves complex interactions of traits that vary within and among species. To date, few data are available to quantify within-species variation in functional traits and they are rarely integrated into mechanistic models to improve predictions of species response to climate change. We quantified intraspecific variation in functional traits of two Hakea species growing along an aridity gradient in southeastern Australia. Measured traits were later used to parameterise the model SurEau to simulate a transplantation experiment to identify the limits of drought tolerance. Embolism resistance varied between species but not across populations. Instead, populations adjusted to drier conditions via contrasting sets of trait trade-offs that facilitated homeostasis of plant water status. The species from relatively mesic climate, Hakea dactyloides, relied on tight stomatal control whereas the species from xeric climate, Hakea leucoptera dramatically increased Huber value and leaf mass per area, while leaf area index (LAI) and epidermal conductance (gmin ) decreased. With trait variability, SurEau predicts the plasticity of LAI and gmin buffers the impact of increasing aridity on population persistence. Knowledge of within-species variability in multiple drought tolerance traits will be crucial to accurately predict species distributional limits.


Asunto(s)
Sequías , Agua , Australia , Cambio Climático , Hojas de la Planta
13.
New Phytol ; 230(4): 1354-1365, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33629360

RESUMEN

Eastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined. We measured pre-dawn and midday leaf water potential (Ψleaf ), per cent loss of stem hydraulic conductivity and quantified hydraulic vulnerability to drought-induced xylem embolism. Tree size and tree health was also surveyed. Trees with most, or all, of their foliage dead exhibited high rates of native embolism (78-100%). This is in contrast to trees with partial canopy die-back (30-70% canopy die-back: 72-78% native embolism), or relatively healthy trees (little evidence of canopy die-back: 25-31% native embolism). Midday Ψleaf was significantly more negative in trees exhibiting partial canopy die-back (-2.7 to -6.3 MPa), compared with relatively healthy trees (-2.1 to -4.5 MPa). In two of the species the majority of individuals showing complete canopy die-back were in the small size classes. Our results indicate that hydraulic failure is strongly associated with canopy die-back during drought in eucalypt forests. Our study provides valuable field data to help constrain models predicting mortality risk.


Asunto(s)
Sequías , Árboles , Australia , Bosques , Hojas de la Planta , Agua , Xilema
14.
Plant Physiol ; 184(1): 212-222, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32581116

RESUMEN

Xylem cavitation resulting in air embolism is a major cause of plant death during drought, yet the spread of embolism throughout the plant water transport system is poorly understood. Our study used optical visualization and x-ray microcomputed tomography imaging to capture the spread of emboli in stems of three drought-resistant angiosperm trees: drooping she-oak (Allocasuarina verticillata), black wattle (Acacia mearnsii), and blue gum (Eucalyptus globulus). These species have similar degrees of xylem network connectivity (vessel grouping) with largely solitary vessels. The high temporal resolution of the optical vulnerability technique revealed that in current year branches, >80% of the cavitation events were discrete, temporally separated events in single vessels. This suggests that in xylem networks with low connectivity, embolism spread between conduits leading to multiple conduit cavitation events is uncommon. A. mearnsii showed both the highest number of multivessel cavitation events and the highest degree of vessel connectivity, suggesting a link between vessel arrangement and embolism spread. Knowledge of embolism spread will help us to uncover the links between xylem anatomy, arrangement, and the path of water flow in the xylem in diverse species to ultimately understand the drivers of cavitation and plant vulnerability to drought.


Asunto(s)
Magnoliopsida/fisiología , Xilema/fisiología , Sequías , Magnoliopsida/anatomía & histología , Xilema/anatomía & histología
15.
Glob Chang Biol ; 27(15): 3620-3641, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33852767

RESUMEN

Globally, forests are facing an increasing risk of mass tree mortality events associated with extreme droughts and higher temperatures. Hydraulic dysfunction is considered a key mechanism of drought-triggered dieback. By leveraging the climate breadth of the Australian landscape and a national network of research sites (Terrestrial Ecosystem Research Network), we conducted a continental-scale study of physiological and hydraulic traits of 33 native tree species from contrasting environments to disentangle the complexities of plant response to drought across communities. We found strong relationships between key plant hydraulic traits and site aridity. Leaf turgor loss point and xylem embolism resistance were correlated with minimum water potential experienced by each species. Across the data set, there was a strong coordination between hydraulic traits, including those linked to hydraulic safety, stomatal regulation and the cost of carbon investment into woody tissue. These results illustrate that aridity has acted as a strong selective pressure, shaping hydraulic traits of tree species across the Australian landscape. Hydraulic safety margins were constrained across sites, with species from wetter sites tending to have smaller safety margin compared with species at drier sites, suggesting trees are operating close to their hydraulic thresholds and forest biomes across the spectrum may be susceptible to shifts in climate that result in the intensification of drought.


Asunto(s)
Sequías , Ecosistema , Australia , Bosques , Hojas de la Planta , Árboles , Agua , Xilema
16.
Glob Chang Biol ; 27(24): 6454-6466, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34469040

RESUMEN

Increasing severity and frequency of drought is predicted for large portions of the terrestrial biosphere, with major impacts already documented in wet tropical forests. Using a 4-year rainfall exclusion experiment in the Daintree Rainforest in northeast Australia, we examined canopy tree responses to reduced precipitation and soil water availability by quantifying seasonal changes in plant hydraulic and carbon traits for 11 tree species between control and drought treatments. Even with reduced soil volumetric water content in the upper 1 m of soil in the drought treatment, we found no significant difference between treatments for predawn and midday leaf water potential, photosynthesis, stomatal conductance, foliar stable carbon isotope composition, leaf mass per area, turgor loss point, xylem vessel anatomy, or leaf and stem nonstructural carbohydrates. While empirical measurements of aboveground traits revealed homeostatic maintenance of plant water status and traits in response to reduced soil moisture, modeled belowground dynamics revealed that trees in the drought treatment shifted the depth from which water was acquired to deeper soil layers. These findings reveal that belowground acclimation of tree water uptake depth may buffer tropical rainforests from more severe droughts that may arise in future with climate change.


Asunto(s)
Árboles , Agua , Carbono , Sequías , Bosques , Hojas de la Planta , Bosque Lluvioso
17.
Ann Bot ; 127(7): 909-918, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33606015

RESUMEN

BACKGROUND AND AIMS: Extreme drought conditions across the globe are impacting biodiversity, with serious implications for the persistence of native species. However, quantitative data on physiological tolerance are not available for diverse flora to inform conservation management. We quantified physiological resistance to cavitation in the diverse Hakea genus (Proteaceae) to test predictions based on climatic origin, life history and functional traits. METHODS: We sampled terminal branches of replicate plants of 16 species in a common garden. Xylem cavitation was induced in branches under varying water potentials (tension) in a centrifuge, and the tension generating 50 % loss of conductivity (stem P50) was characterized as a metric for cavitation resistance. The same branches were used to estimate plant functional traits, including wood density, specific leaf area and Huber value (sap flow area to leaf area ratio). KEY RESULTS: There was significant variation in stem P50 among species, which was negatively associated with the species climate origin (rainfall and aridity). Cavitation resistance did not differ among life histories; however, a drought avoidance strategy with terete leaf form and greater Huber value may be important for species to colonize and persist in the arid biome. CONCLUSIONS: This study highlights climate (rainfall and aridity), rather than life history and functional traits, as the key predictor of variation in cavitation resistance (stem P50). Rainfall for species origin was the best predictor of cavitation resistance, explaining variation in stem P50, which appears to be a major determinant of species distribution. This study also indicates that stem P50 is an adaptive trait, genetically determined, and hence reliable and robust for predicting species vulnerability to climate change. Our findings will contribute to future prediction of species vulnerability to drought and adaptive management under climate change.


Asunto(s)
Proteaceae , Sequías , Ecosistema , Hojas de la Planta , Árboles , Agua , Xilema
18.
New Phytol ; 228(3): 884-897, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32542732

RESUMEN

Hydraulic failure of the plant vascular system is a principal cause of forest die-off under drought. Accurate quantification of this process is essential to our understanding of the physiological mechanisms underpinning plant mortality. Imaging techniques increasingly are applied to estimate xylem cavitation resistance. These techniques allow for in situ measurement of embolism formation in real time, although the benefits and trade-offs associated with different techniques have not been evaluated in detail. Here we compare two imaging methods, microcomputed tomography (microCT) and optical vulnerability (OV), to standard hydraulic methods for measurement of cavitation resistance in seven woody species representing a diversity of major phylogenetic and xylem anatomical groups. Across the seven species, there was strong agreement between cavitation resistance values (P50 ) estimated from visualization techniques (microCT and OV) and between visual techniques and hydraulic techniques. The results indicate that visual techniques provide accurate estimates of cavitation resistance and the degree to which xylem hydraulic function is impacted by embolism. Results are discussed in the context of trade-offs associated with each technique and possible causes of discrepancy between estimates of cavitation resistance provided by visual and hydraulic techniques.


Asunto(s)
Agua , Xilema , Sequías , Filogenia , Madera , Microtomografía por Rayos X
19.
J Exp Bot ; 71(20): 6623-6637, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-32822502

RESUMEN

Root vulnerability to cavitation is challenging to measure and under-represented in current datasets. This gap limits the precision of models used to predict plant responses to drought because roots comprise the critical interface between plant and soil. In this study, we measured vulnerability to drought-induced cavitation in woody roots and stems of five tree species (Acacia aneura, Cedrus deodara, Eucalyptus crebra, Eucalytus saligna, and Quercus palustris) with a wide range of xylem anatomies. X-ray microtomography was used to visualize the accumulation of xylem embolism in stems and roots of intact plants that were naturally dehydrated to varying levels of water stress. Vulnerability to cavitation, defined as the water potential causing a 50% loss of hydraulic function (P50), varied broadly among the species (-4.51 MPa to -11.93 MPa in stems and -3.13 MPa to -9.64 MPa in roots). The P50 of roots and stems was significantly related across species, with species that had more vulnerable stems also having more vulnerable roots. While there was strong convergence in root and stem vulnerability to cavitation, the P50 of roots was significantly higher than the P50 of stems in three species. However, the difference in root and stem vulnerability for these species was small; between 1% and 31% of stem P50. Thus, while some differences existed between organs, roots were not dramatically more vulnerable to embolism than stems, and the differences observed were less than those reported in previous studies. Further study is required to evaluate the vulnerability across root orders and to extend these conclusions to a greater number of species and xylem functional types.


Asunto(s)
Quercus , Árboles , Sequías , Hojas de la Planta , Tallos de la Planta , Agua , Xilema
20.
Glob Chang Biol ; 26(10): 5716-5733, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32512628

RESUMEN

South-East Australia has recently been subjected to two of the worst droughts in the historical record (Millennium Drought, 2000-2009 and Big Dry, 2017-2019). Unfortunately, a lack of forest monitoring has made it difficult to determine whether widespread tree mortality has resulted from these droughts. Anecdotal observations suggest the Big Dry may have led to more significant tree mortality than the Millennium drought. Critically, to be able to robustly project future expected climate change effects on Australian vegetation, we need to assess the vulnerability of Australian trees to drought. Here we implemented a model of plant hydraulics into the Community Atmosphere Biosphere Land Exchange (CABLE) land surface model. We parameterized the drought response behaviour of five broad vegetation types, based on a common garden dry-down experiment with species originating across a rainfall gradient (188-1,125 mm/year) across South-East Australia. The new hydraulics model significantly improved (~35%-45% reduction in root mean square error) CABLE's previous predictions of latent heat fluxes during periods of water stress at two eddy covariance sites in Australia. Landscape-scale predictions of the greatest percentage loss of hydraulic conductivity (PLC) of about 40%-60%, were broadly consistent with satellite estimates of regions of the greatest change in both droughts. In neither drought did CABLE predict that trees would have reached critical PLC in widespread areas (i.e. it projected a low mortality risk), although the model highlighted critical levels near the desert regions of South-East Australia where few trees live. Overall, our experimentally constrained model results imply significant resilience to drought conferred by hydraulic function, but also highlight critical data and scientific gaps. Our approach presents a promising avenue to integrate experimental data and make regional-scale predictions of potential drought-induced hydraulic failure.


Asunto(s)
Sequías , Árboles , Australia , Cambio Climático , Hojas de la Planta , Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA