Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Front Oncol ; 12: 886430, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35586499

RESUMEN

Multimodality therapy including surgical resection is the current paradigm in treating malignant pleural mesothelioma (MPM), a thoracic surface cancer without cure. The main limitation of all surgical approaches is the lack of long-term durability because macroscopic complete resection (R1 resection) commonly predisposes to locoregional relapse. Over the years, there have been many studies that describe various intrapleural strategies that aim to extend the effect of surgical resection. The majority of these approaches are intraoperative adjuvants. Broadly, there are three therapeutic classes that employ diverse agents. The most common, widely used group of adjuvants are comprised of direct therapeutics such as intracavitary chemotherapy (± hyperthermia). By comparison, the least commonly employed intrathoracic adjuvant is the class comprised of drug-device combinations like photodynamic therapy (PDT). But the most rapidly evolving (new) class with much potential for improved efficacy are therapeutics delivered by specialized drug vehicles such as a fibrin gel containing cisplatin. This review provides an updated perspective on pleural-directed adjuncts in the management of MPM as well as highlighting the most promising near-term technology breakthroughs.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37323368

RESUMEN

Malignant pleural mesothelioma (MPM) is an aggressive and recalcitrant surface neoplasm that defies current multimodality treatments. MicroRNAs (miRNAs) are small noncoding RNAs that epigenetically regulate multiple gene networks and cellular processes. In cancer, miRNA dysregulation is associated with tumorigenesis, with tumor suppressor miRNAs underexpressed or lost, while oncogenic miRNAs are overexpressed. Consequently, miRNAs have emerged as potential therapeutic candidates. Because loss of tumor suppressors predominates the pathophysiology of MPM, re-expressing tumor suppressor miRNAs could be an effective therapeutic strategy. This review highlights the most promising MPM-specific tumor suppressor miRNAs that could be developed into novel therapeutics, the supporting data, and what is known about their molecular mechanism(s).

3.
Sci Rep ; 9(1): 11603, 2019 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-31406197

RESUMEN

Standard automated perimetry (SAP), the most common form of perimetry used in clinical practice, is associated with high test variability, impacting clinical decision making and efficiency. Contrast sensitivity isocontours (CSIs) may reduce test variability in SAP by identifying regions of the visual field with statistically similar patterns of change that can be analysed collectively and allow a point (disease)-to-CSI (normal) comparison in disease assessment as opposed to a point (disease)-to-point (normal) comparison. CSIs in the central visual field however have limited applicability as they have only been described using visual field test patterns with low, 6° spatial sampling. In this study, CSIs were determined within the central 20° visual field using the 10-2 test grid paradigm of the Humphrey Field Analyzer which has a high 2° sampling frequency. The number of CSIs detected in the central 20° visual field was greater than previously reported with low spatial sampling and stimulus size dependent: 6 CSIs for GI, 4 CSIs for GII and GIII, and 3 CSIs for GIV and GV. CSI number and distribution were preserved with age. Use of CSIs to assess visual function in age-related macular degeneration (AMD) found CSI guided analysis detected a significantly greater deviation in sensitivity of AMD eyes from normal compared to a standard clinical pointwise comparison (-1.40 ± 0.15 dB vs -0.96 ± 0.15 dB; p < 0.05). This work suggests detection of CSIs within the central 20° is dependent on sampling strategy and stimulus size and normative distribution limits of CSIs can indicate significant functional deficits in diseases affecting the central visual field such as AMD.


Asunto(s)
Sensibilidad de Contraste , Campos Visuales , Adulto , Anciano , Análisis por Conglomerados , Femenino , Humanos , Degeneración Macular/fisiopatología , Masculino , Persona de Mediana Edad , Pruebas del Campo Visual , Adulto Joven
4.
Am J Ophthalmol ; 208: 166-177, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31078539

RESUMEN

PURPOSE: To develop location-specific models of normal, age-related changes in the macular ganglion cell layer (GCL) from optical coherence tomography (OCT). Using these OCT-derived models, we predicted visual field (VF) sensitivities and compared these results to actual VF sensitivities. DESIGN: Retrospective cohort study. METHODS: Single eyes of 254 normal participants were retrospectively enrolled from the Centre for Eye Health (Sydney, Australia). Macular GCL measurements were obtained using Spectralis OCT. Cluster algorithms were performed to identify spatial patterns demonstrating similar age-related change. Quadratic and linear regression models were subsequently used to characterize age-related GCL decline. Forty participants underwent additional testing with Humphrey VFs, and 95% prediction intervals were calculated to measure the predictive ability of structure-function models incorporating cluster-based pooling, age correction, and consideration of spatial summation. RESULTS: Quadratic GCL regression models provided a superior fit (P value <.0001-.0066), establishing that GCL decline commences in the late 30s across the macula. The equivalent linear rates of GCL decline showed eccentricity-dependent variation (0.13 µm/yr centrally vs 0.06 µm/yr peripherally); however, average, normalized GCL loss per year was consistent across the 64 macular measurement locations at 0.26%. The 95% prediction intervals describing predicted VF sensitivities were significantly narrower across all cluster-based structure-function models (3.79-4.99 dB) compared with models without clustering applied (5.66-6.73 dB, P < .0001). CONCLUSIONS: Combining spatial clustering with age-correction based on regression models allowed the development of robust models describing GCL changes with age. The resultant superior predictive ability of VF sensitivity from ganglion cell measurements may be applied to future models of disease development to improve detection of early macular GCL pathology.


Asunto(s)
Envejecimiento/fisiología , Modelos Teóricos , Células Ganglionares de la Retina/fisiología , Campos Visuales/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Umbral Sensorial/fisiología , Tomografía de Coherencia Óptica , Agudeza Visual/fisiología , Adulto Joven
5.
Invest Ophthalmol Vis Sci ; 59(5): 1693-1703, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29610852

RESUMEN

Purpose: To investigate the effect of stimulus size and disease status on the structure-function relationship within the central retina, we correlated the differential light sensitivity (DLS) with Goldmann stimulus size I to V (GI-V) and optical coherence tomography (OCT) derived in vivo ganglion cell count per stimulus area (GCc) within the macular area in normal subjects and patients with early glaucoma. Methods: Humphrey Field Analyzer 10-2 visual field data with GI through V and Spectralis OCT macular ganglion cell layer (GCL) thickness measurements were collected from normal and early glaucoma cohorts including 25 subjects each. GCc was calculated from GCL thickness data and correlated with DLSs for different stimulus sizes. Results: Correlation coefficients attained with smaller stimulus size were higher compared to larger stimulus sizes in both normal (GI-GII: R2 = 0.41-0.43, GIII-GV: R2 = 0.16-0.41) and diseased cohorts (GI-GII: R2 = 0.33-0.41, GIII-GV: R2 = 0.19-0.36). Quadratic regression curves for combined GI to V data demonstrated high correlation (R2= 0.82-0.90) and differed less than 1 dB of visual sensitivity within the GCc range between cohorts. The established structure-function relationship was compatible with a histologically derived model correlation spanning the range predicted by stimulus sizes GI to GIII. Conclusions: Stimulus sizes within critical spatial summation area (GI-II) improved structure-function correlations in the central visual field. The structure-function relationship was identical in both normal and diseased cohort when GI to GV data were combined. Congruency of GI and GII structure-function correlation with those previously derived with GIII from more peripheral locations further suggests that the structure-function relationship is governed by the number of ganglion cell per stimulus area.


Asunto(s)
Glaucoma de Ángulo Abierto/fisiopatología , Fibras Nerviosas/patología , Células Ganglionares de la Retina/patología , Campos Visuales/fisiología , Adulto , Anciano , Recuento de Células , Femenino , Glaucoma de Ángulo Abierto/diagnóstico , Humanos , Presión Intraocular/fisiología , Masculino , Persona de Mediana Edad , Tomografía de Coherencia Óptica/métodos , Pruebas del Campo Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA