Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Entropy (Basel) ; 23(8)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34441105

RESUMEN

Since the 1960s, many rivers have been destroyed as a consequence of the process of rapid urbanization. As accurate figures are important to repair rivers, there have been many research reports on methods to obtain the exact river slope and elevation. Until now, many research efforts have analyzed the river using measured river topographic factors, but when the flow velocity changes rapidly, such as during a flood, surveying is not easy; and due to cost, frequent measurements are difficult. Previous research has focused on the cross section of the river, so the information on the river longitudinal profile is insufficient. In this research, using informational entropy theory, equations are presented that can calculate the average river slope, river slope, and river longitudinal elevation for a river basin in real time. The applicability was analyzed through a comparison with the measured data of river characteristic factors obtained from the river plan. The parameters were calculated using informational entropy theory and nonlinear regression analysis using actual data, and then the longitudinal elevation entropy equation for each river and the average river slope were calculated. As a result of analyzing the applicability of the equations presented in this study by R2 and Root Mean Square Error, all R2 values were over 0.80, while RMSE values were analyzed to be between 0.54 and 2.79. Valid results can be obtained by calculating river characteristic factors.

2.
Entropy (Basel) ; 23(11)2021 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-34828238

RESUMEN

Korean river design standards set general design standards for rivers and river-related projects in Korea, which systematize the technologies and methods involved in river-related projects. This includes measurement methods for parts necessary for river design, but does not include information on shear stress. Shear stress is one of the factors necessary for river design and operation. Shear stress is one of the most important hydraulic factors used in the fields of water, especially for artificial channel design. Shear stress is calculated from the frictional force caused by viscosity and fluctuating fluid velocity. Current methods are based on past calculations, but factors such as boundary shear stress or energy gradient are difficult to actually measure or estimate. The point velocity throughout the entire cross-section is needed to calculate the velocity gradient. In other words, the current Korean river design standards use tractive force and critical tractive force instead of shear stress because it is more difficult to calculate the shear stress in the current method. However, it is difficult to calculate the exact value due to the limitations of the formula to obtain the river factor called the tractive force. In addition, tractive force has limitations that use an empirically identified base value for use in practice. This paper focuses on the modeling of shear-stress distribution in open channel turbulent flow using entropy theory. In addition, this study suggests a shear stress distribution formula, which can easily be used in practice after calculating the river-specific factor T. The tractive force and critical tractive force in the Korean river design standards should be modified by the shear stress obtained by the proposed shear stress distribution method. The present study therefore focuses on the modeling of shear stress distribution in an open channel turbulent flow using entropy theory. The shear stress distribution model is tested using a wide range of forty-two experimental runs collected from the literature. Then, an error analysis is performed to further evaluate the accuracy of the proposed model. The results reveal a correlation coefficient of approximately 0.95-0.99, indicating that the proposed method can estimate shear-stress distribution accurately. Based on this, the results of the distribution of shear stress after calculating the river-specific factors show a correlation coefficient of about 0.86 to 0.98, which suggests that the equation can be applied in practice.

3.
Entropy (Basel) ; 23(5)2021 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-34069236

RESUMEN

In general, this new equation is significant for designing and operating a pipeline to predict flow discharge. In order to predict the flow discharge, accurate determination of the flow loss due to pipe friction is very important. However, existing pipe friction coefficient equations have difficulties in obtaining key variables or those only applicable to pipes with specific conditions. Thus, this study develops a new equation for predicting pipe friction coefficients using statistically based entropy concepts, which are currently being used in various fields. The parameters in the proposed equation can be easily obtained and are easy to estimate. Existing formulas for calculating pipe friction coefficient requires the friction head loss and Reynolds number. Unlike existing formulas, the proposed equation only requires pipe specifications, entropy value and average velocity. The developed equation can predict the friction coefficient by using the well-known entropy, the mean velocity and the pipe specifications. The comparison results with the Nikuradse's experimental data show that the R2 and RMSE values were 0.998 and 0.000366 in smooth pipe, and 0.979 to 0.994 or 0.000399 to 0.000436 in rough pipe, and the discrepancy ratio analysis results show that the accuracy of both results in smooth and rough pipes is very close to zero. The proposed equation will enable the easier estimation of flow rates.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA