Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Bioinformatics ; 39(12)2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37995286

RESUMEN

MOTIVATION: Predicting protein structures with high accuracy is a critical challenge for the broad community of life sciences and industry. Despite progress made by deep neural networks like AlphaFold2, there is a need for further improvements in the quality of detailed structures, such as side-chains, along with protein backbone structures. RESULTS: Building upon the successes of AlphaFold2, the modifications we made include changing the losses of side-chain torsion angles and frame aligned point error, adding loss functions for side chain confidence and secondary structure prediction, and replacing template feature generation with a new alignment method based on conditional random fields. We also performed re-optimization by conformational space annealing using a molecular mechanics energy function which integrates the potential energies obtained from distogram and side-chain prediction. In the CASP15 blind test for single protein and domain modeling (109 domains), DeepFold ranked fourth among 132 groups with improvements in the details of the structure in terms of backbone, side-chain, and Molprobity. In terms of protein backbone accuracy, DeepFold achieved a median GDT-TS score of 88.64 compared with 85.88 of AlphaFold2. For TBM-easy/hard targets, DeepFold ranked at the top based on Z-scores for GDT-TS. This shows its practical value to the structural biology community, which demands highly accurate structures. In addition, a thorough analysis of 55 domains from 39 targets with publicly available structures indicates that DeepFold shows superior side-chain accuracy and Molprobity scores among the top-performing groups. AVAILABILITY AND IMPLEMENTATION: DeepFold tools are open-source software available at https://github.com/newtonjoo/deepfold.


Asunto(s)
Proteínas , Programas Informáticos , Conformación Proteica , Proteínas/química , Estructura Secundaria de Proteína , Pliegue de Proteína
2.
Anal Chem ; 95(46): 16918-16926, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37946317

RESUMEN

To gain a better understanding of the complex human immune system, it is necessary to measure and interpret numerous cellular protein expressions at the single cell level. Mass cytometry is a relatively new technology that offers unprecedented information about the protein expression of a single cell. Conversely, the analysis of high-dimensional and multiparametric mass cytometric data sets presents a new computational challenge. For instance, conventional "manual gating" analysis was inefficient and unreliable for multiparametric phenotyping of the heterogeneous immune cellular system; consequently, automated methods have been developed to address the high dimensionality of mass cytometry data and enhance the reproducibility of the analysis. Here, we present CyGate, a semiautomated method for classifying single cells into their respective cell types. CyGate learns a gating strategy from a reference data set, trains a model for cell classification, and then automatically analyzes additional data sets using the trained model. CyGate also supports the machine learning framework for the classification of "ungated" cells, which are typically disregarded by automated methods. CyGate's utility was demonstrated by its high performance in cell type classification and the lowest generalization error on various public data sets when compared to the state-of-the-art semiautomated methods. Notably, CyGate had the shortest execution time, allowing it to scale with a growing number of samples. CyGate is available at https://github.com/seungjinna/cygate.


Asunto(s)
Biología Computacional , Aprendizaje Automático , Humanos , Citometría de Flujo/métodos , Reproducibilidad de los Resultados , Biología Computacional/métodos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA