RESUMEN
Mutations in glycosylation pathways, such as N-linked glycosylation, O-linked glycosylation, and GPI anchor synthesis, lead to Congenital Disorders of Glycosylation (CDG). CDG typically present with seizures, hypotonia, and developmental delay but display large clinical variability with symptoms affecting every system in the body. This variability suggests modifier genes might influence the phenotypes. Because of the similar physiology and clinical symptoms, there are likely common genetic modifiers between CDG. Here, we use evolution as a tool to identify common modifiers between CDG and glycosylation genes. Protein glycosylation is evolutionarily conserved from yeast to mammals. Evolutionary rate covariation (ERC) identifies proteins with similar evolutionary rates that indicate shared biological functions and pathways. Using ERC, we identified strong evolutionary rate signatures between proteins in the same and different glycosylation pathways. Genome-wide analysis of proteins showing significant ERC with GPI anchor synthesis proteins revealed strong signatures with ncRNA modification proteins and DNA repair proteins. We also identified strong patterns of ERC based on cellular sub-localization of the GPI anchor synthesis enzymes. Functional testing of the highest scoring candidates validated genetic interactions and identified novel genetic modifiers of CDG genes. ERC analysis of disease genes and biological pathways allows for rapid prioritization of potential genetic modifiers, which can provide a better understanding of disease pathophysiology and novel therapeutic targets.
Asunto(s)
Trastornos Congénitos de Glicosilación , Evolución Molecular , Glicosilación , Humanos , Trastornos Congénitos de Glicosilación/genética , Trastornos Congénitos de Glicosilación/metabolismo , Animales , Mutación , Glicosilfosfatidilinositoles/metabolismo , Glicosilfosfatidilinositoles/genética , FenotipoRESUMEN
DPAGT1-CDG is a Congenital Disorder of Glycosylation (CDG) that lacks effective therapies. It is caused by mutations in the gene DPAGT1 which encodes the first enzyme in N-linked glycosylation. We used a Drosophila rough eye model of DPAGT1-CDG with an improperly developed, small eye phenotype. We performed a drug repurposing screen on this model using 1,520 small molecules that are 98% FDA/EMA-approved to find drugs that improved its eye. We identified 42 candidate drugs that improved the DPAGT1-CDG model. Notably from this screen, we found that pharmacological and genetic inhibition of the dopamine D2 receptor partially rescued the DPAGT1-CDG model. Loss of both dopamine synthesis and recycling partially rescued the model, suggesting that dopaminergic flux and subsequent binding to D2 receptors is detrimental under DPAGT1 deficiency. This links dopamine signaling to N-glycosylation and represents a new potential therapeutic target for treating DPAGT1-CDG. We also genetically validate other top drug categories including acetylcholine-related drugs, COX inhibitors, and an inhibitor of NKCC1. These drugs and subsequent analyses reveal novel biology in DPAGT1 mechanisms, and they may represent new therapeutic options for DPAGT1-CDG.
RESUMEN
NGLY1 deficiency, a rare disease with no effective treatment, is caused by autosomal recessive, loss-of-function mutations in the N-glycanase 1 (NGLY1) gene and is characterized by global developmental delay, hypotonia, alacrima, and seizures. We used a Drosophila model of NGLY1 deficiency to conduct an in vivo, unbiased, small molecule, repurposing screen of FDA-approved drugs to identify therapeutic compounds. Seventeen molecules partially rescued lethality in a patient-specific NGLY1 deficiency model, including multiple serotonin and dopamine modulators. Exclusive dNGLY1 expression in serotonin and dopamine neurons, in an otherwise dNGLY1 deficient fly, was sufficient to partially rescue lethality. Further, genetic modifier and transcriptomic data supports the importance of serotonin signaling in NGLY1 deficiency. Connectivity Map analysis identified glycogen synthase kinase 3 (GSK3) inhibition as a potential therapeutic mechanism for NGLY1 deficiency, which we experimentally validated with TWS119, lithium, and GSK3 knockdown. Strikingly, GSK3 inhibitors and a serotonin modulator rescued size defects in dNGLY1 deficient larvae upon proteasome inhibition, suggesting that these compounds act through NRF1, a transcription factor that is regulated by NGLY1 and regulates proteasome expression. This study reveals the importance of the serotonin pathway in NGLY1 deficiency, and serotonin modulators or GSK3 inhibitors may be effective therapeutics for this rare disease.
Asunto(s)
Reposicionamiento de Medicamentos , Glucógeno Sintasa Quinasa 3 , Animales , Trastornos Congénitos de Glicosilación , Drosophila/genética , Drosophila/metabolismo , Humanos , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Complejo de la Endopetidasa Proteasomal/metabolismo , Enfermedades Raras , Serotonina/genéticaRESUMEN
Partial loss-of-function mutations in glycosylation pathways underlie a set of rare diseases called Congenital Disorders of Glycosylation (CDGs). In particular, DPAGT1-CDG is caused by mutations in the gene encoding the first step in N-glycosylation, DPAGT1, and this disorder currently lacks effective therapies. To identify potential therapeutic targets for DPAGT1-CDG, we performed CRISPR knockout screens in Drosophila cells for genes associated with better survival and glycoprotein levels under DPAGT1 inhibition. We identified hundreds of candidate genes that may be of therapeutic benefit. Intriguingly, inhibition of the mannosyltransferase Dpm1, or its downstream glycosylation pathways, could rescue two in vivo models of DPAGT1 inhibition and ER stress, even though impairment of these pathways alone usually causes CDGs. While both in vivo models ostensibly cause cellular stress (through DPAGT1 inhibition or a misfolded protein), we found a novel difference in fructose metabolism that may indicate glycolysis as a modulator of DPAGT1-CDG. Our results provide new therapeutic targets for DPAGT1-CDG, include the unique finding of Dpm1-related pathways rescuing DPAGT1 inhibition, and reveal a novel interaction between fructose metabolism and ER stress.
Asunto(s)
Trastornos Congénitos de Glicosilación , Manosiltransferasas , N-Acetilglucosaminiltransferasas/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Trastornos Congénitos de Glicosilación/genética , Fructosa , Genoma , Glicoproteínas/genética , Humanos , Manosiltransferasas/genéticaRESUMEN
Researchers should embrace differences in genetic background to build richer disease models that more accurately reflect the level of variation in the human population, posits Clement Chow.
Asunto(s)
Modelos Animales de Enfermedad , Antecedentes Genéticos , Variación Genética , Genética Médica/métodos , Animales , Drosophila/genética , Humanos , Ratones Endogámicos C57BL , MutaciónRESUMEN
Endoplasmic reticulum (ER) stress is an important modifier of human disease. Genetic variation in response genes is linked to inter-individual differences in the ER stress response. However, the mechanisms and pathways by which genetic modifiers are acting on the ER stress response remain unclear. In this study, we characterize the role of the long chain fatty acid elongase Baldspot (ELOVL6) in modifying the ER stress response and disease. We demonstrate that loss of Baldspot rescues degeneration and reduces IRE1 and PERK signaling and cell death in a Drosophila model of retinitis pigmentosa and ER stress (Rh1G69D). Dietary supplementation of stearate bypasses the need for Baldspot activity. Finally, we demonstrate that Baldspot regulates the ER stress response across different tissues and induction methods. Our findings suggest that ELOVL6 is a promising target in the treatment of not only retinitis pigmentosa, but a number of different ER stress-related disorders.
Asunto(s)
Acetiltransferasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/genética , Estrés del Retículo Endoplásmico/genética , Proteínas de la Membrana/metabolismo , Acetiltransferasas/genética , Animales , Línea Celular , Ojo Compuesto de los Artrópodos/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Polimorfismo de Nucleótido Simple , Empalme del ARN , Retinitis Pigmentosa/diagnóstico , Retinitis Pigmentosa/genética , Transducción de Señal , Tunicamicina/farmacología , Alas de Animales/metabolismoRESUMEN
Autosomal recessive loss-of-function mutations in N-glycanase 1 (NGLY1) cause NGLY1 deficiency, the only known human disease of deglycosylation. Patients present with developmental delay, movement disorder, seizures, liver dysfunction and alacrima. NGLY1 is a conserved cytoplasmic component of the Endoplasmic Reticulum Associated Degradation (ERAD) pathway. ERAD clears misfolded proteins from the ER lumen. However, it is unclear how loss of NGLY1 function impacts ERAD and other cellular processes and results in the constellation of problems associated with NGLY1 deficiency. To understand how loss of NGLY1 contributes to disease, we developed a Drosophila model of NGLY1 deficiency. Loss of NGLY1 function resulted in developmental delay and lethality. We used RNAseq to determine which processes are misregulated in the absence of NGLY1. Transcriptome analysis showed no evidence of ER stress upon NGLY1 knockdown. However, loss of NGLY1 resulted in a strong signature of NRF1 dysfunction among downregulated genes, as evidenced by an enrichment of genes encoding proteasome components and proteins involved in oxidation-reduction. A number of transcriptome changes also suggested potential therapeutic interventions, including dysregulation of GlcNAc synthesis and upregulation of the heat shock response. We show that increasing the function of both pathways rescues lethality. Together, transcriptome analysis in a Drosophila model of NGLY1 deficiency provides insight into potential therapeutic approaches.
Asunto(s)
Trastornos Congénitos de Glicosilación/genética , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/deficiencia , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/metabolismo , Acetilglucosamina/biosíntesis , Animales , Discapacidades del Desarrollo/metabolismo , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Retículo Endoplásmico/metabolismo , Degradación Asociada con el Retículo Endoplásmico/genética , Glicosilación , Péptido-N4-(N-acetil-beta-glucosaminil) Asparagina Amidasa/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Convulsiones/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma/genéticaRESUMEN
The model organism Drosophila melanogaster has been at the forefront of genetic studies since before the discovery of DNA. Although human disease modeling in flies may still be rather novel, recent advances in genetic tool design and genome sequencing now confer huge advantages in the fly system when modeling human disease. In this review, we focus on new genomic tools for human gene variant analysis; new uses for the Drosophila Genetic Reference Panel (DGRP) in detection of background alleles that influence a phenotype; and several examples of how multigenic conditions, both complex disorders and duplication and/or deletion syndromes, can be effectively studied in the fly model system. Fruit flies are a far cry from the quaint genetic model of the past, but rather, continue to evolve as a powerful system for the study of human genetic disease.
Asunto(s)
Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Enfermedades Genéticas Congénitas , Genómica/métodos , Alelos , Animales , Humanos , FenotipoRESUMEN
Individuals carrying the same pathogenic mutation can present with a broad range of disease outcomes. While some of this variation arises from environmental factors, it is increasingly recognized that the background genetic variation of each individual can have a profound effect on the expressivity of a pathogenic mutation. In order to understand this background effect on disease-causing mutations, studies need to be performed across a wide range of backgrounds. Recent advancements in model organism biology allow us to test mutations across genetically diverse backgrounds and identify the genes that influence the expressivity of a mutation. In this study, we used the Drosophila Genetic Reference Panel, a collection of â¼200 wild-derived strains, to test the variability of the retinal phenotype of the Rh1(G69D) Drosophila model of retinitis pigmentosa (RP). We found that the Rh1(G69D) retinal phenotype is quite a variable quantitative phenotype. To identify the genes driving this extensive phenotypic variation, we performed a genome-wide association study. We identified 106 candidate genes, including 14 high-priority candidates. Functional testing by RNAi indicates that 10/13 top candidates tested influence the expressivity of Rh1(G69D). The human orthologs of the candidate genes have not previously been implicated as RP modifiers and their functions are diverse, including roles in endoplasmic reticulum stress, apoptosis and retinal degeneration and development. This study demonstrates the utility of studying a pathogenic mutation across a wide range of genetic backgrounds. These candidate modifiers provide new avenues of inquiry that may reveal new RP disease mechanisms and therapies.
Asunto(s)
Drosophila/genética , Retinitis Pigmentosa/genética , Rodopsina/genética , Animales , Femenino , Estudios de Asociación Genética , Variación Genética , Estudio de Asociación del Genoma Completo , Genotipo , Masculino , Modelos Animales , Mutación , Linaje , Fenotipo , Retina/patologíaRESUMEN
Endoplasmic reticulum (ER) stress occurs when misfolded proteins accumulate in the ER. The cellular response to ER stress involves complex transcriptional and translational changes, important to the survival of the cell. ER stress is a primary cause and a modifier of many human diseases. A first step to understanding how the ER stress response impacts human disease is to determine how the transcriptional response to ER stress varies among individuals. The genetic diversity of the eight mouse Collaborative Cross (CC) founder strains allowed us to determine how genetic variation impacts the ER stress transcriptional response. We used tunicamycin, a drug commonly used to induce ER stress, to elicit an ER stress response in mouse embryonic fibroblasts (MEFs) derived from the CC founder strains and measured their transcriptional responses. We identified hundreds of genes that differed in response to ER stress across these genetically diverse strains. Strikingly, inflammatory response genes differed most between strains; major canonical ER stress response genes showed relatively invariant responses across strains. To uncover the genetic architecture underlying these strain differences in ER stress response, we measured the transcriptional response to ER stress in MEFs derived from a subset of F1 crosses between the CC founder strains. We found a unique layer of regulatory variation that is only detectable under ER stress conditions. Over 80% of the regulatory variation under ER stress derives from cis-regulatory differences. This is the first study to characterize the genetic variation in ER stress transcriptional response in the laboratory mouse. Our findings indicate that the ER stress transcriptional response is highly variable among strains and arises from genetic variation in individual downstream response genes, rather than major signaling transcription factors. These results have important implications for understanding how genetic variation impacts the ER stress response, an important component of many human diseases.
Asunto(s)
Estrés del Retículo Endoplásmico/genética , Variación Genética , Factores de Transcripción/genética , Animales , Regulación de la Expresión Génica , Humanos , Ratones , Transducción de Señal/genética , Factores de Transcripción/metabolismo , Transcripción GenéticaRESUMEN
Mating induces a multitude of changes in female behavior, physiology, and gene expression. Interactions between female and male genotype lead to variation in post-mating phenotypes and reproductive success. So far, few female molecules responsible for these interactions have been identified. Here, we used Drosophila melanogaster from 5 geographically dispersed populations to investigate such female × male genotypic interactions at the female transcriptomic and phenotypic levels. Females from each line were singly-mated to males from the same 5 lines, for a total of 25 combinations. Reproductive output and refractoriness to re-mating were assayed in females from the 25 mating combinations. Female × male genotypic interactions resulted in significant differences in these post-mating phenotypes. To assess whether female × male genotypic interactions affect the female post-mating transcriptome, next-generation RNA sequencing was performed on virgin and mated females at 5 to 6 h post-mating. Seventy-seven genes showed strong variation in mating-induced expression changes in a female × male genotype-dependent manner. These genes were enriched for immune response and odorant-binding functions, and for expression exclusively in the head. Strikingly, variation in post-mating transcript levels of a gene encoding a spermathecal endopeptidase was correlated with short-term egg production. The transcriptional variation found in specific functional classes of genes might be a read-out of female × male compatibility at a molecular level. Understanding the roles these genes play in the female post-mating response will be crucial to better understand the evolution of post-mating responses and related conflicts between the sexes.
Asunto(s)
Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Conducta Sexual Animal , Animales , Cruzamientos Genéticos , Femenino , Genes de Insecto , Genotipo , Masculino , Fenotipo , Reproducción/genética , TranscriptomaRESUMEN
Natural genetic variation is a rich resource for identifying novel elements of cellular pathways such as endoplasmic reticulum (ER) stress. ER stress occurs when misfolded proteins accumulate in the ER and cells respond with the conserved unfolded protein response (UPR), which includes large-scale gene expression changes. Although ER stress can be a cause or a modifying factor of human disease, little is known of the amount of variation in the response to ER stress and the genes contributing to such variation. To study natural variation in ER stress response in a model system, we measured the survival time in response to tunicamycin-induced ER stress in flies from 114 lines from the sequenced Drosophila Genetic Reference Panel of wild-derived inbred strains. These lines showed high heterogeneity in survival time under ER stress conditions. To identify the genes that may be driving this phenotypic variation, we profiled ER stress-induced gene expression and performed an association study. Microarray analysis identified variation in transcript levels of numerous known and previously unknown ER stress-responsive genes. Survival time was significantly associated with polymorphisms in candidate genes with known (i.e., Xbp1) and unknown roles in ER stress. Functional testing found that 17 of 25 tested candidate genes from the association study have putative roles in ER stress. In both approaches, one-third of ER stress genes had human orthologs that contribute to human disease. This study establishes Drosophila as a useful model for studying variation in ER stress and identifying ER stress genes that may contribute to human disease.
Asunto(s)
Drosophila/genética , Estrés del Retículo Endoplásmico/genética , Variación Genética/genética , Animales , Bases de Datos Genéticas , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estudios de Asociación Genética , Humanos , Especificidad de la Especie , Tasa de Supervivencia , Tunicamicina/toxicidadRESUMEN
CMT4J is a severe form of Charcot-Marie-Tooth neuropathy caused by mutation of the phosphoinositide phosphatase FIG4/SAC3. Affected individuals are compound heterozygotes carrying the missense allele FIG4-I41T in combination with a null allele. Analysis using the yeast two-hybrid system demonstrated that the I41T mutation impairs interaction of FIG4 with the scaffold protein VAC14. The critical role of this interaction was confirmed by the demonstration of loss of FIG4 protein in VAC14 null mice. We developed a mouse model of CMT4J by expressing a Fig4-I41T cDNA transgene on the Fig4 null background. Expression of the mutant transcript at a level 5 × higher than endogenous Fig4 completely rescued lethality, whereas 2 × expression gave only partial rescue, providing a model of the human disease. The level of FIG4-I41T protein in transgenic tissues is only 2% of that predicted by the transcript level, as a consequence of the protein instability caused by impaired interaction of the mutant protein with VAC14. Analysis of patient fibroblasts demonstrated a comparably low level of mutant I41T protein. The abundance of FIG4-I41T protein in cultured cells is increased by treatment with the proteasome inhibitor MG-132. The data demonstrate that FIG4-I41T is a hypomorphic allele encoding a protein that is unstable in vivo. Expression of FIG4-I41T protein at 10% of normal level is sufficient for long-term survival, suggesting that patients with CMT4J could be treated by increased production or stabilization of the mutant protein. The transgenic model will be useful for testing in vivo interventions to increase the abundance of the mutant protein.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Flavoproteínas/genética , Mutación , Alelos , Animales , Autofagia/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Fibroblastos/metabolismo , Flavoproteínas/metabolismo , Gliosis/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana , Ratones , Ratones Transgénicos , Modelos Animales , Fosfoinosítido Fosfatasas , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma , TransfecciónRESUMEN
Stress preconditioning occurs when transient, sublethal stress events impact an organism's ability to counter future stresses. Although preconditioning effects are often noted in the literature, very little is known about the underlying mechanisms. To model preconditioning, we exposed a panel of genetically diverse Drosophila melanogaster to a sublethal heat shock and measured how well the flies survived subsequent exposure to endoplasmic reticulum (ER) stress. The impact of preconditioning varied with genetic background, ranging from dying half as fast to 4 and a half times faster with preconditioning compared to no preconditioning. Subsequent association and transcriptional analyses revealed that histone methylation, and transcriptional regulation are both candidate preconditioning modifier pathways. Strikingly, almost all subunits (7/8) in the Set1/COMPASS complex were identified as candidate modifiers of preconditioning. Functional analysis of Set1 knockdown flies demonstrated that loss of Set1 led to the transcriptional dysregulation of canonical ER stress genes during preconditioning. Based on these analyses, we propose a preconditioning model in which Set1 helps to establish an interim transcriptional "memory" of previous stress events, resulting in a preconditioned response to subsequent stress.
Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Regulación de la Expresión Génica , Metilación , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismoRESUMEN
Mutations in the phosphatidylinositol glycan biosynthesis class A (PIGA) gene cause a rare, X-linked recessive congenital disorder of glycosylation. Phosphatidylinositol glycan biosynthesis class A congenital disorder of glycosylation (PIGA-CDG) is characterized by seizures, intellectual and developmental delay, and congenital malformations. The PIGA gene encodes an enzyme involved in the first step of glycosylphosphatidylinositol (GPI) anchor biosynthesis. There are over 100 GPI-anchored proteins that attach to the cell surface and are involved in cell signaling, immunity, and adhesion. Little is known about the pathophysiology of PIGA-CDG. Here, we describe the first Drosophila model of PIGA-CDG and demonstrate that loss of PIG-A function in Drosophila accurately models the human disease. As expected, complete loss of PIG-A function is larval lethal. Heterozygous null animals appear healthy but, when challenged, have a seizure phenotype similar to what is observed in patients. To identify the cell-type specific contributions to disease, we generated neuron- and glia-specific knockdown of PIG-A. Neuron-specific knockdown resulted in reduced lifespan and a number of neurological phenotypes but no seizure phenotype. Glia-knockdown also reduced lifespan and, notably, resulted in a very strong seizure phenotype. RNA sequencing analyses demonstrated that there are fundamentally different molecular processes that are disrupted when PIG-A function is eliminated in different cell types. In particular, loss of PIG-A in neurons resulted in upregulation of glycolysis, but loss of PIG-A in glia resulted in upregulation of protein translation machinery. Here, we demonstrate that Drosophila is a good model of PIGA-CDG and provide new data resources for future study of PIGA-CDG and other GPI anchor disorders.
Asunto(s)
Drosophila , Glicosilfosfatidilinositoles , Animales , Humanos , Glicosilación , Fosfatidilinositoles , Fenotipo , Convulsiones/genética , MutaciónRESUMEN
Loss of function mutations in the X-linked PIGA gene lead to PIGA-CDG, an ultra-rare congenital disorder of glycosylation (CDG), typically presenting with seizures, hypotonia, and neurodevelopmental delay. We identified two brothers (probands) with PIGA-CDG, presenting with epilepsy and mild developmental delay. Both probands carry PIGA S132C , an ultra-rare variant predicted to be damaging. Strikingly, the maternal grandfather and a great-uncle also carry PIGA S132C , but neither presents with symptoms associated with PIGA-CDG. We hypothesized genetic modifiers may contribute to this reduced penetrance. Using whole genome sequencing and pedigree analysis, we identified possible susceptibility variants found in the probands and not in carriers and possible protective variants found in the carriers and not in the probands. Candidate variants included heterozygous, damaging variants in three genes also involved directly in GPI-anchor biosynthesis and a few genes involved in other glycosylation pathways or encoding GPI-anchored proteins. We functionally tested the predicted modifiers using a Drosophila eye-based model of PIGA-CDG. We found that loss of CNTN2 , a predicted protective modifier, rescues loss of PIGA in Drosophila eye-based model, like what we predict in the family. Further testing found that loss of CNTN2 also rescues patient-relevant phenotypes, including seizures and climbing defects in Drosophila neurological models of PIGA-CDG. By using pedigree information, genome sequencing, and in vivo testing, we identified CNTN2 as a strong candidate modifier that could explain the incomplete penetrance in this family. Identifying and studying rare disease modifier genes in human pedigrees may lead to pathways and targets that may be developed into therapies.
RESUMEN
Membrane-bound phosphoinositides are signalling molecules that have a key role in vesicle trafficking in eukaryotic cells. Proteins that bind specific phosphoinositides mediate interactions between membrane-bounded compartments whose identity is partially encoded by cytoplasmic phospholipid tags. Little is known about the localization and regulation of mammalian phosphatidylinositol-3,5-bisphosphate (PtdIns(3,5)P2), a phospholipid present in small quantities that regulates membrane trafficking in the endosome-lysosome axis in yeast. Here we describe a multi-organ disorder with neuronal degeneration in the central nervous system, peripheral neuronopathy and diluted pigmentation in the 'pale tremor' mouse. Positional cloning identified insertion of ETn2beta (early transposon 2beta) into intron 18 of Fig4 (A530089I17Rik), the homologue of a yeast SAC (suppressor of actin) domain PtdIns(3,5)P2 5-phosphatase located in the vacuolar membrane. The abnormal concentration of PtdIns(3,5)P2 in cultured fibroblasts from pale tremor mice demonstrates the conserved biochemical function of mammalian Fig4. The cytoplasm of fibroblasts from pale tremor mice is filled with large vacuoles that are immunoreactive for LAMP-2 (lysosomal-associated membrane protein 2), consistent with dysfunction of the late endosome-lysosome axis. Neonatal neurodegeneration in sensory and autonomic ganglia is followed by loss of neurons from layers four and five of the cortex, deep cerebellar nuclei and other localized brain regions. The sciatic nerve exhibits reduced numbers of large-diameter myelinated axons, slowed nerve conduction velocity and reduced amplitude of compound muscle action potentials. We identified pathogenic mutations of human FIG4 (KIAA0274) on chromosome 6q21 in four unrelated patients with hereditary motor and sensory neuropathy. This novel form of autosomal recessive Charcot-Marie-Tooth disorder is designated CMT4J.
Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Flavoproteínas/genética , Mutación , Degeneración Nerviosa/genética , Secuencia de Aminoácidos , Animales , Células Cultivadas , Mapeo Cromosómico , Cromosomas Humanos Par 6 , Estudios de Cohortes , Femenino , Flavoproteínas/fisiología , Humanos , Masculino , Ratones , Ratones Endogámicos , Datos de Secuencia Molecular , Degeneración Nerviosa/patología , Nervios Periféricos/patología , Fosfatos de Fosfatidilinositol/metabolismo , Fosfoinosítido Fosfatasas , Monoéster Fosfórico Hidrolasas , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Retroelementos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Temblor/genéticaRESUMEN
Stress preconditioning occurs when transient, sublethal stress events impact an organism's ability to counter future stresses. Although preconditioning effects are often noted in the literature, very little is known about the underlying mechanisms. To model preconditioning, we exposed a panel of genetically diverse Drosophila melanogaster to a sublethal heat shock and measured how well the flies survived subsequent exposure to endoplasmic reticulum (ER) stress. The impact of preconditioning varied with genetic background, ranging from dying half as fast to four and a half times faster with preconditioning compared to no preconditioning. Subsequent association and transcriptional analyses revealed that histone methylation, transcriptional regulation, and immune status are all candidate preconditioning modifier pathways. Strikingly, almost all subunits (7/8) in the Set1/COMPASS complex were identified as candidate modifiers of preconditioning. Functional analysis of Set1 knockdown flies demonstrated that loss of Set1 led to the transcriptional dysregulation of canonical ER stress genes during preconditioning. Based on these analyses, we propose a model of preconditioning in which Set1 helps to establish an interim transcriptional 'memory' of previous stress events, resulting in a preconditioned response to subsequent stress.
RESUMEN
Misfolded proteins in the endoplasmic reticulum (ER) elicit the ER stress response, a large transcriptional response driven by 3 well-characterized transcription factors (TFs). This transcriptional response is variable across different genetic backgrounds. One mechanism in which genetic variation can lead to transcriptional variability in the ER stress response is through altered binding and activity of the 3 main TFs: XBP1, ATF6, and ATF4. This work attempts to better understand this mechanism by first creating a computational pipeline to identify potential binding sites throughout the human genome. We utilized GTEx data sets to identify cis-eQTLs that fall within predicted TF binding sites (TFBSs). We also utilized the ClinVar database to compare the number of pathogenic vs benign variants at different positions of the binding motifs. Finally, we performed a cis-eQTL analysis on human cell lines experiencing ER stress to identify cis-eQTLs that regulate the variable ER stress response. The majority of these cis-eQTLs are unique to a given condition: control or ER stress. Some of these stress-specific cis-eQTLs fall within putative binding sites of the 3 main ER stress response TFs, providing a potential mechanism by which these cis-eQTLs might be impacting gene expression under ER stress conditions through altered TF binding. This study represents the first cis-eQTL analysis on human samples experiencing ER stress and is a vital step toward identifying the genetic components responsible for the variable ER stress response.
Asunto(s)
Sitios de Carácter Cuantitativo , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Sitios de Unión , Unión Proteica , Variación Genética , Polimorfismo de Nucleótido SimpleRESUMEN
Mutations in the phosphatidylinositol glycan biosynthesis class A (PIGA) gene cause a rare, X-linked recessive congenital disorder of glycosylation (CDG). PIGA-CDG is characterized by seizures, intellectual and developmental delay, and congenital malformations. The PIGA gene encodes an enzyme involved in the first step of GPI anchor biosynthesis. There are over 100 GPI anchored proteins that attach to the cell surface and are involved in cell signaling, immunity, and adhesion. Little is known about the pathophysiology of PIGA-CDG. Here we describe the first Drosophila model of PIGA-CDG and demonstrate that loss of PIG-A function in Drosophila accurately models the human disease. As expected, complete loss of PIG-A function is larval lethal. Heterozygous null animals appear healthy, but when challenged, have a seizure phenotype similar to what is observed in patients. To identify the cell-type specific contributions to disease, we generated neuron- and glia-specific knockdown of PIG-A. Neuron-specific knockdown resulted in reduced lifespan and a number of neurological phenotypes, but no seizure phenotype. Glia-knockdown also reduced lifespan and, notably, resulted in a very strong seizure phenotype. RNAseq analyses demonstrated that there are fundamentally different molecular processes that are disrupted when PIG-A function is eliminated in different cell types. In particular, loss of PIG-A in neurons resulted in upregulation of glycolysis, but loss of PIG-A in glia resulted in upregulation of protein translation machinery. Here we demonstrate that Drosophila is a good model of PIGA-CDG and provide new data resources for future study of PIGA-CDG and other GPI anchor disorders.