Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nature ; 597(7876): 350-354, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34526709

RESUMEN

The evolution of a Landau Fermi liquid into a non-magnetic Mott insulator with increasing electronic interactions is one of the most puzzling quantum phase transitions in physics1-6. The vicinity of the transition is believed to host exotic states of matter such as quantum spin liquids4-7, exciton condensates8 and unconventional superconductivity1. Semiconductor moiré materials realize a highly controllable Hubbard model simulator on a triangular lattice9-22, providing a unique opportunity to drive a metal-insulator transition (MIT) via continuous tuning of the electronic interactions. Here, by electrically tuning the effective interaction strength in MoTe2/WSe2 moiré superlattices, we observe a continuous MIT at a fixed filling of one electron per unit cell. The existence of quantum criticality is supported by the scaling collapse of the resistance, a continuously vanishing charge gap as the critical point is approached from the insulating side, and a diverging quasiparticle effective mass from the metallic side. We also observe a smooth evolution of the magnetic susceptibility across the MIT and no evidence of long-range magnetic order down to ~5% of the Curie-Weiss temperature. This signals an abundance of low-energy spinful excitations on the insulating side that is further corroborated by the Pomeranchuk effect observed on the metallic side. Our results are consistent with the universal critical theory of a continuous Mott transition in two dimensions4,23.

2.
Proc Natl Acad Sci U S A ; 120(11): e2217816120, 2023 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-36897971

RESUMEN

Superconductivity is a macroscopic manifestation of a quantum phenomenon where pairs of electrons delocalize and develop phase coherence over a long distance. A long-standing quest has been to address the underlying microscopic mechanisms that fundamentally limit the superconducting transition temperature, Tc. A platform which serves as an ideal playground for realizing "high"-temperature superconductors are materials where the electrons' kinetic energy is quenched and interactions provide the only energy scale in the problem. However, when the noninteracting bandwidth for a set of isolated bands is small compared to the interactions, the problem is inherently nonperturbative. In two spatial dimensions, Tc is controlled by superconducting phase stiffness. Here, we present a theoretical framework for computing the electromagnetic response for generic model Hamiltonians, which controls the maximum possible superconducting phase stiffness and thereby Tc, without resorting to any mean-field approximation. Our explicit computations demonstrate that the contribution to the phase stiffness arises from i) "integrating out" the remote bands that couple to the microscopic current operator and ii) the density-density interactions projected on to the isolated narrow bands. Our framework can be used to obtain an upper bound on the phase stiffness and relatedly Tc for a range of physically inspired models involving both topological and nontopological narrow bands with density-density interactions. We discuss a number of salient aspects of this formalism by applying it to a specific model of interacting flat bands and compare the upper bound against the known Tc from independent numerically exact computations.

3.
Proc Natl Acad Sci U S A ; 120(36): e2305609120, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639598

RESUMEN

An electronic solid with itinerant carriers and localized magnetic moments represents a paradigmatic strongly correlated system. The electrical transport properties associated with the itinerant carriers, as they scatter off these local moments, have been scrutinized across a number of materials. Here, we analyze the transport characteristics associated with ultraclean PdCrO[Formula: see text]-a quasi-two-dimensional material consisting of alternating layers of itinerant Pd-electrons and Mott-insulating CrO[Formula: see text] layers-which shows a pronounced regime of T-linear resistivity over a wide range of intermediate temperatures. By contrasting these observations to the transport properties in a closely related material PdCoO[Formula: see text], where the CoO[Formula: see text] layers are band-insulators, we can rule out the traditional electron-phonon interactions as being responsible for this interesting regime. We propose a previously ignored electron-magneto-elastic interaction between the Pd-electrons, the Cr local moments and an out-of-plane phonon as the main scattering mechanism that leads to the significant enhancement of resistivity and a T-linear regime in PdCrO[Formula: see text] at temperatures far in excess of the magnetic ordering temperature. We suggest a number of future experiments to confirm this picture in PdCrO[Formula: see text] as well as other layered metallic/Mott-insulating materials.

4.
Proc Natl Acad Sci U S A ; 120(36): e2307334120, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37639594

RESUMEN

The layered delafossite metal PdCrO[Formula: see text] is a natural heterostructure of highly conductive Pd layers Kondo coupled to localized spins in the adjacent Mott insulating CrO[Formula: see text] layers. At high temperatures, T, it has a T-linear resistivity which is not seen in the isostructural but nonmagnetic PdCoO[Formula: see text]. The strength of the Kondo coupling is known, as-grown crystals are extremely high purity and the Fermi surface is both very simple and experimentally known. It is therefore an ideal material platform in which to investigate "Planckian metal" physics. We do this by means of controlled introduction of point disorder, measurement of the thermal conductivity and Lorenz ratio, and studying the sources of its high-temperature entropy. The T-linear resistivity is seen to be due mainly to elastic scattering and to arise from a sum of several scattering mechanisms. Remarkably, this sum leads to a scattering rate within 10[Formula: see text] of the Planckian value of k[Formula: see text]T/[Formula: see text].

5.
Phys Rev Lett ; 130(6): 066301, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36827551

RESUMEN

Recent experiments in moiré transition metal dichalcogenide materials have reported the observation of a continuous bandwidth-tuned transition from a metal to a paramagnetic Mott insulator at a fixed filling of one electron per moiré unit cell. The electrical transport measurements reveal a number of puzzling features that are seemingly at odds with the theoretical expectations of an interaction-induced, but disorder-free, bandwidth-tuned metal-insulator transition. In this Letter, we include the effects of long-wavelength inhomogeneities, building on the results for a continuous metal-insulator transition at fixed filling in the clean limit. We examine the effects of mesoscale inhomogeneities near the critical point on transport using the framework of random resistor networks, highlighting the salient differences from a simple percolation-based picture. We place our results in the context of recent and ongoing experiments.

6.
Phys Rev Lett ; 130(2): 026202, 2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36706414

RESUMEN

Band topology is traditionally analyzed in terms of gauge-invariant observables associated with crystalline Bloch wave functions. Recent work has demonstrated that many of the free fermion topological characteristics survive even in an amorphous setting. In this Letter, we extend these studies to incorporate the effect of strong repulsive interactions on the fate of topology and other correlation induced phenomena. Using a parton-based mean-field approach, we obtain the interacting phase diagram for an electronic two-orbital model with tunable topology in a two-dimensional amorphous network. In addition to the (non-)topological phases that are adiabatically connected to the free fermion limit, we find a number of strongly interacting amorphous analogs of crystalline Mott insulating phases with nontrivial chiral neutral edge modes, and a fractionalized Anderson insulating phase. The amorphous networks thus provide a new playground for studying a plethora of exotic states of matter, and their glassy dynamics, due to the combined effects of nontrivial topology, disorder, and strong interactions.

7.
Phys Rev Lett ; 130(22): 226001, 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37327441

RESUMEN

Predicting the fate of an interacting system in the limit where the electronic bandwidth is quenched is often highly nontrivial. The complex interplay between interactions and quantum fluctuations driven by the band geometry can drive competition between various ground states, such as charge density wave order and superconductivity. In this work, we study an electronic model of topologically trivial flat bands with a continuously tunable Fubini-Study metric in the presence of on-site attraction and nearest-neighbor repulsion, using numerically exact quantum Monte Carlo simulations. By varying the electron filling and the minimal spatial extent of the localized flat-band Wannier wave functions, we obtain a number of intertwined orders. These include a phase with coexisting charge density wave order and superconductivity, i.e., a supersolid. In spite of the nonperturbative nature of the problem, we identify an analytically tractable limit associated with a "small" spatial extent of the Wannier functions and derive a low-energy effective Hamiltonian that can well describe our numerical results. We also provide unambiguous evidence for the violation of any putative lower bound on the zero-temperature superfluid stiffness in geometrically nontrivial flat bands.


Asunto(s)
Electrones , Superconductividad , Análisis por Conglomerados , Método de Montecarlo , Temperatura
8.
Phys Rev Lett ; 124(7): 076801, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32142336

RESUMEN

Recent experiments on magic-angle twisted bilayer graphene have discovered correlated insulating behavior and superconductivity at a fractional filling of an isolated narrow band. Here we show that magic-angle bilayer graphene exhibits another hallmark of strongly correlated systems-a broad regime of T-linear resistivity above a small density-dependent crossover temperature-for a range of fillings near the correlated insulator. This behavior is reminiscent of similar behavior in other strongly correlated systems, often denoted "strange metals," such as cuprates, iron pnictides, ruthenates, and cobaltates, where the observations are at odds with expectations in a weakly interacting Fermi liquid. We also extract a transport "scattering rate," which satisfies a near Planckian form that is universally related to the ratio of (k_{B}T/ℏ). Our results establish magic-angle bilayer graphene as a highly tunable platform to investigate strange metal behavior, which could shed light on this mysterious ubiquitous phase of correlated matter.

9.
Phys Rev Lett ; 120(26): 266601, 2018 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-30004777

RESUMEN

Tunneling of electrons into a two-dimensional electron system is known to exhibit an anomaly at low bias, in which the tunneling conductance vanishes due to a many-body interaction effect. Recent experiments have measured this anomaly between two copies of the half-filled Landau level as a function of in-plane magnetic field, and they suggest that increasing spin polarization drives a deeper suppression of tunneling. Here, we present a theory of the tunneling anomaly between two copies of the partially spin-polarized Halperin-Lee-Read state, and we show that the conventional description of the tunneling anomaly, based on the Coulomb self-energy of the injected charge packet, is inconsistent with the experimental observation. We propose that the experiment is operating in a different regime, not previously considered, in which the charge-spreading action is determined by the compressibility of the composite fermions.

10.
Phys Rev Lett ; 111(15): 157004, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24160621

RESUMEN

We present a general theory of the singularity in the London penetration depth at symmetry-breaking and topological quantum critical points within a superconducting phase. While the critical exponents and ratios of amplitudes on the two sides of the transition are universal, an overall sign depends upon the interplay between the critical theory and the underlying Fermi surface. We determine these features for critical points to spin density wave and nematic ordering, and for a topological transition between a superconductor with Z2 fractionalization and a conventional superconductor. We note implications for recent measurements of the London penetration depth in BaFe2(As(1-x)P(x))2 [K. Hashimoto et al., Science 336, 1554 (2012)].

11.
Nat Commun ; 14(1): 3919, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37400449

RESUMEN

The strange metallic regime across a number of high-temperature superconducting materials presents numerous challenges to the classic theory of Fermi liquid metals. Recent measurements of the dynamical charge response of strange metals, including optimally doped cuprates, have revealed a broad, featureless continuum of excitations, extending over much of the Brillouin zone. The collective density oscillations of this strange metal decay into the continuum in a manner that is at odds with the expectations of Fermi liquid theory. Inspired by these observations, we investigate the phenomenology of bosonic collective modes and the particle-hole excitations in a class of strange metals by making an analogy to the phonons of classical lattices falling apart across an unconventional jamming-like transition associated with the onset of rigidity. By making comparisons to the experimentally measured dynamical response functions, we reproduce many of the qualitative features using the above framework. We conjecture that the dynamics of electronic charge density over an intermediate range of energy scales in a class of strongly correlated metals can be at the brink of a jamming-like transition.

12.
Nat Commun ; 14(1): 7006, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37938579

RESUMEN

Quantum oscillation phenomenon is an essential tool to understand the electronic structure of quantum matter. Here we report a systematic study of quantum oscillations in the electronic specific heat Cel in natural graphite. We show that the crossing of a single spin Landau level and the Fermi energy give rise to a double-peak structure, in striking contrast to the single peak expected from Lifshitz-Kosevich theory. Intriguingly, the double-peak structure is predicted by the kernel term for Cel/T in the free electron theory. The Cel/T represents a spectroscopic tuning fork of width 4.8kBT which can be tuned at will to resonance. Using a coincidence method, the double-peak structure can be used to accurately determine the Landé g-factors of quantum materials. More generally, the tuning fork can be used to reveal any peak in fermionic density of states tuned by magnetic field, such as Lifshitz transition in heavy-fermion compounds.

13.
Phys Rev E ; 106(5): L052601, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36559468

RESUMEN

The onset of rigidity in interacting liquids, as they undergo a transition to a disordered solid, is associated with a rearrangement of the low-frequency vibrational spectrum. In this Letter, we derive scaling forms for the singular dynamical response of disordered viscoelastic networks near both jamming and rigidity percolation. Using effective-medium theory, we extract critical exponents, invariant scaling combinations, and analytical formulas for universal scaling functions near these transitions. Our scaling forms describe the behavior in space and time near the various onsets of rigidity, for rigid and floppy phases and the crossover region, including diverging length scales and timescales at the transitions.

14.
Sci Adv ; 8(12): eabk1911, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35333575

RESUMEN

Moiré superlattices constructed from transition metal dichalcogenides have demonstrated a series of emergent phenomena, including moiré excitons, flat bands, and correlated insulating states. All of these phenomena depend crucially on the presence of strong moiré potentials, yet the properties of these moiré potentials, and the mechanisms by which they can be generated, remain largely open questions. Here, we use angle-resolved photoemission spectroscopy with submicron spatial resolution to investigate an aligned WS2/WSe2 moiré superlattice and graphene/WS2/WSe2 trilayer heterostructure. Our experiments reveal that the hybridization between moiré bands in WS2/WSe2 exhibits an unusually large momentum dependence, with the splitting between moiré bands at the Γ point more than an order of magnitude larger than that at K point. In addition, we discover that the same WS2/WSe2 superlattice can imprint an unexpectedly large moiré potential on a third, separate layer of graphene (g/WS2/WSe2), suggesting new avenues for engineering two-dimensional moiré superlattices.

15.
Biophys J ; 99(8): 2443-52, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20959084

RESUMEN

Obtaining quantitative kinetic parameters from fluorescence recovery after photobleaching (FRAP) experiments generally requires a theoretical analysis of protein mobility and appropriate solutions for FRAP recovery derived for a given geometry. Here we provide a treatment of FRAP recovery for a molecule undergoing a combined process of reversible membrane association and lateral diffusion on the plasma membrane for two commonly used bleach geometries: stripes, and boxes. Such analysis is complicated by the fact that diffusion of a molecule during photobleaching can lead to broadening of the bleach area, resulting in significant deviations of the actual bleach shape from the desired bleach geometry, which creates difficulty in accurately measuring kinetic parameters. Here we overcome the problem of deviations between actual and idealized bleach geometries by parameterizing, more accurately, the initial postbleach state. This allows for reconstruction of an accurate and analytically tractable approximation of the actual fluorescence distribution. Through simulated FRAP experiments, we demonstrate that this method can be used to accurately measure a broad range of combinations of diffusion constants and exchange rates. Use of this method to analyze the plextrin homology domain of PLC-δ1 in Caenorhabditis elegans results in quantitative agreement with prior analysis of this domain in other cells using other methods. Because of the flexibility, relative ease of implementation, and its use of standard, easily obtainable bleach geometries, this method should be broadly applicable to investigation of protein dynamics at the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Citoplasma/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Proteínas/metabolismo , Animales , Caenorhabditis elegans/enzimología , Difusión , Células HEK293 , Humanos , Modelos Biológicos , Fosfolipasa C delta/metabolismo , Reproducibilidad de los Resultados
16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(1 Pt 1): 011908, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19658730

RESUMEN

Syntheses of protein molecules in a cell are carried out by ribosomes. A ribosome can be regarded as a molecular motor which utilizes the input chemical energy to move on a messenger RNA (mRNA) track that also serves as a template for the polymerization of the corresponding protein. The forward movement, however, is characterized by an alternating sequence of translocation and pause. Using a quantitative model, which captures the mechanochemical cycle of an individual ribosome, we derive an exact analytical expression for the distribution of its dwell times at the successive positions on the mRNA track. Inverse of the average dwell time satisfies a "Michaelis-Menten-type" equation and is consistent with the general formula for the average velocity of a molecular motor with an unbranched mechanochemical cycle. Extending this formula appropriately, we also derive the exact force-velocity relation for a ribosome. Often many ribosomes simultaneously move on the same mRNA track, while each synthesizes a copy of the same protein. We extend the model of a single ribosome by incorporating steric exclusion of different individuals on the same track. We draw the phase diagram of this model of ribosome traffic in three-dimensional spaces spanned by experimentally controllable parameters. We suggest new experimental tests of our theoretical predictions.


Asunto(s)
Modelos Biológicos , Ribosomas/metabolismo , Fenómenos Biomecánicos , Difusión , Cinética , Movimiento , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Procesos Estocásticos
17.
Nat Commun ; 9(1): 1766, 2018 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-29720630

RESUMEN

Samarium hexaboride is a classic three-dimensional mixed valence system with a high-temperature metallic phase that evolves into a paramagnetic charge insulator below 40 K. A number of recent experiments have suggested the possibility that the low-temperature insulating bulk hosts electrically neutral gapless fermionic excitations. Here we show that a possible ground state of strongly correlated mixed valence insulators-a composite exciton Fermi liquid-hosts a three dimensional Fermi surface of a neutral fermion, that we name the "composite exciton." We describe the mechanism responsible for the formation of such excitons, discuss the phenomenology of the composite exciton Fermi liquids and make comparison to experiments in SmB6.

18.
Sci Adv ; 4(10): eaau5501, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30345365

RESUMEN

Domain walls (DWs) are singularities in an ordered medium that often host exotic phenomena such as charge ordering, insulator-metal transition, or superconductivity. The ability to locally write and erase DWs is highly desirable, as it allows one to design material functionality by patterning DWs in specific configurations. We demonstrate such capability at room temperature in a charge density wave (CDW), a macroscopic condensate of electrons and phonons, in ultrathin 1T-TaS2. A single femtosecond light pulse is shown to locally inject or remove mirror DWs in the CDW condensate, with probabilities tunable by pulse energy and temperature. Using time-resolved electron diffraction, we are able to simultaneously track anti-synchronized CDW amplitude oscillations from both the lattice and the condensate, where photoinjected DWs lead to a red-shifted frequency. Our demonstration of reversible DW manipulation may pave new ways for engineering correlated material systems with light.

19.
Nat Commun ; 5: 5771, 2014 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-25493606

RESUMEN

The nature of the pseudogap regime of cuprate superconductors at low hole density remains unresolved. It has a number of seemingly distinct experimental signatures: a suppression of the paramagnetic spin susceptibility at high temperatures, low-energy electronic excitations that extend over arcs in the Brillouin zone, X-ray detection of charge-density wave order at intermediate temperatures and quantum oscillations at high magnetic fields and low temperatures. Here we show that a model of competing charge-density wave and superconducting orders provides a unified description of the intermediate and low-temperature regimes. We treat quantum oscillations at high field beyond semiclassical approximations, and find clear and robust signatures of an electron pocket compatible with existing observations; we also predict oscillations due to additional hole pockets. In the zero-field and intermediate temperature regime, we compute the electronic spectrum in the presence of thermally fluctuating charge-density and superconducting orders. Our results are compatible with experimental trends.

20.
Rev Sci Instrum ; 83(12): 123906, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23278004

RESUMEN

We present here the design of a sensitive compact Faraday-modulator (CFM) based optical magnetometer for imaging the distribution of weak local magnetic fields inside hysteretic magnetic materials. The system developed has a root-mean-square noise level of 50 mG Hz(-1/2) at a full frame rate of 1 fps (frame per second) with each frame being of size 512 × 512 pixels. By measuring the local magnetic field distribution in different superconducting samples we show that our magnetometer provides an order of magnitude improvement in the signal-to-noise ratio at low fields as compared to ordinary magneto-optical imaging technique. Moreover, it provides the required sensitivity for imaging the weak magnetization response near a superconducting transition where a number of other imaging techniques are practically unviable. An advantage of our CFM design is that it can be scaled in size to fit into situations with tight space constraints.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA