Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Mol Cell ; 77(6): 1251-1264.e9, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32023484

RESUMEN

Lipid droplets (LDs) store lipids for energy and are central to cellular lipid homeostasis. The mechanisms coordinating lipid storage in LDs with cellular metabolism are unclear but relevant to obesity-related diseases. Here we utilized genome-wide screening to identify genes that modulate lipid storage in macrophages, a cell type involved in metabolic diseases. Among ∼550 identified screen hits is MLX, a basic helix-loop-helix leucine-zipper transcription factor that regulates metabolic processes. We show that MLX and glucose-sensing family members MLXIP/MondoA and MLXIPL/ChREBP bind LDs via C-terminal amphipathic helices. When LDs accumulate in cells, these transcription factors bind to LDs, reducing their availability for transcriptional activity and attenuating the response to glucose. Conversely, the absence of LDs results in hyperactivation of MLX target genes. Our findings uncover a paradigm for a lipid storage response in which binding of MLX transcription factors to LD surfaces adjusts the expression of metabolic genes to lipid storage levels.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Regulación de la Expresión Génica , Glucosa/metabolismo , Gotas Lipídicas/metabolismo , Proteoma/metabolismo , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/antagonistas & inhibidores , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Células Cultivadas , Pruebas Genéticas , Humanos , Macrófagos/citología , Macrófagos/metabolismo , Unión Proteica , Proteoma/análisis , ARN Interferente Pequeño , Transcripción Genética
2.
Proc Natl Acad Sci U S A ; 117(19): 10565-10574, 2020 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-32345721

RESUMEN

Numerous mutations that impair retrograde membrane trafficking between endosomes and the Golgi apparatus lead to neurodegenerative diseases. For example, mutations in the endosomal retromer complex are implicated in Alzheimer's and Parkinson's diseases, and mutations of the Golgi-associated retrograde protein (GARP) complex cause progressive cerebello-cerebral atrophy type 2 (PCCA2). However, how these mutations cause neurodegeneration is unknown. GARP mutations in yeast, including one causing PCCA2, result in sphingolipid abnormalities and impaired cell growth that are corrected by treatment with myriocin, a sphingolipid synthesis inhibitor, suggesting that alterations in sphingolipid metabolism contribute to cell dysfunction and death. Here we tested this hypothesis in wobbler mice, a murine model with a homozygous partial loss-of-function mutation in Vps54 (GARP protein) that causes motor neuron disease. Cytotoxic sphingoid long-chain bases accumulated in embryonic fibroblasts and spinal cords from wobbler mice. Remarkably, chronic treatment of wobbler mice with myriocin markedly improved their wellness scores, grip strength, neuropathology, and survival. Proteomic analyses of wobbler fibroblasts revealed extensive missorting of lysosomal proteins, including sphingolipid catabolism enzymes, to the Golgi compartment, which may contribute to the sphingolipid abnormalities. Our findings establish that altered sphingolipid metabolism due to GARP mutations contributes to neurodegeneration and suggest that inhibiting sphingolipid synthesis might provide a useful strategy for treating these disorders.


Asunto(s)
Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Esfingolípidos/metabolismo , Animales , Modelos Animales de Enfermedad , Endosomas/metabolismo , Ácidos Grasos Monoinsaturados/farmacología , Femenino , Fibroblastos/metabolismo , Aparato de Golgi/metabolismo , Masculino , Ratones , Ratones Mutantes Neurológicos , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/metabolismo , Enfermedad de la Neurona Motora/patología , Neuronas Motoras/metabolismo , Células Madre Embrionarias de Ratones , Mutación , Malformaciones del Sistema Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Transporte de Proteínas , Proteómica , Proteínas de Transporte Vesicular/metabolismo
3.
Genome Res ; 29(7): 1100-1114, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31227602

RESUMEN

Posttranscriptional regulation plays a crucial role in shaping gene expression. During the maternal-to-zygotic transition (MZT), thousands of maternal transcripts are regulated. However, how different cis-elements and trans-factors are integrated to determine mRNA stability remains poorly understood. Here, we show that most transcripts are under combinatorial regulation by multiple decay pathways during zebrafish MZT. By using a massively parallel reporter assay, we identified cis-regulatory sequences in the 3' UTR, including U-rich motifs that are associated with increased mRNA stability. In contrast, miR-430 target sequences, UAUUUAUU AU-rich elements (ARE), CCUC, and CUGC elements emerged as destabilizing motifs, with miR-430 and AREs causing mRNA deadenylation upon genome activation. We identified trans-factors by profiling RNA-protein interactions and found that poly(U)-binding proteins are preferentially associated with 3' UTR sequences and stabilizing motifs. We show that this activity is antagonized by C-rich motifs and correlated with protein binding. Finally, we integrated these regulatory motifs into a machine learning model that predicts reporter mRNA stability in vivo.


Asunto(s)
Regiones no Traducidas 3' , Regulación del Desarrollo de la Expresión Génica , Estabilidad del ARN/genética , Proteínas de Unión al ARN/metabolismo , Secuencias de Aminoácidos , Animales , Sitios de Unión , Aprendizaje Automático , Modelos Genéticos , Secuencias Reguladoras de Ácido Ribonucleico , Pez Cebra/embriología , Pez Cebra/genética , Cigoto
4.
Mol Cell Proteomics ; 17(5): 836-849, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29414761

RESUMEN

Obesity is tightly linked to hepatic steatosis and insulin resistance. One feature of this association is the paradox of selective insulin resistance: insulin fails to suppress hepatic gluconeogenesis but activates lipid synthesis in the liver. How lipid accumulation interferes selectively with some branches of hepatic insulin signaling is not well understood. Here we provide a resource, based on unbiased approaches and established in a simple cell culture system, to enable investigations of the phenomenon of selective insulin resistance. We analyzed the phosphoproteome of insulin-treated human hepatoma cells and identified sites in which palmitate selectively impairs insulin signaling. As an example, we show that palmitate interferes with insulin signaling to FoxO1, a key transcription factor regulating gluconeogenesis, and identify altered FoxO1 cellular compartmentalization as a contributing mechanism for selective insulin resistance. This model system, together with our comprehensive characterization of the proteome, phosphoproteome, and lipidome changes in response to palmitate treatment, provides a novel and useful resource for unraveling the mechanisms underlying selective insulin resistance.


Asunto(s)
Hepatocitos/patología , Resistencia a la Insulina , Palmitatos/toxicidad , Secuencia de Aminoácidos , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Proteína Forkhead Box O1/metabolismo , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Humanos , Insulina/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Proteoma/metabolismo , Proteómica , Transducción de Señal
5.
Mol Microbiol ; 106(1): 74-92, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28742275

RESUMEN

The infectious metacyclic forms of Trypanosoma brucei result from a complex development in the tsetse fly vector. When they infect mammals, they cause African sleeping sickness in humans. Due to scarcity of biological material and difficulties of the tsetse fly as an experimental system, very limited information is available concerning the gene expression profile of metacyclic forms. We used an in vitro system based on expressing the RNA binding protein 6 to obtain infectious metacyclics and determined their protein and mRNA repertoires by mass-spectrometry (MS) based proteomics and mRNA sequencing (RNA-Seq) in comparison to non-infectious procyclic trypanosomes. We showed that metacyclics are quiescent cells, and propose this influences the choice of a monocistronic variant surface glycoprotein expression site. Metacyclics have a largely bloodstream-form type transcriptome, and thus are programmed to translate a bloodstream-form type proteome upon entry into the mammalian host and resumption of cell division. Genes encoding cell surface components showed the largest changes between procyclics and metacyclics, observed at both the transcript and protein levels. Genes encoding metabolic enzymes exhibited expression in metacyclics with features of both procyclic and bloodstream forms, suggesting that this intermediate-type metabolism is dictated by the availability of nutrients in the tsetse fly vector.


Asunto(s)
Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Animales , Enfermedades Transmisibles , Humanos , Mamíferos , Espectrometría de Masas , Glicoproteínas de Membrana/metabolismo , Proteoma , Proteómica , ARN Mensajero , Transcriptoma , Tripanosomiasis Africana/microbiología , Moscas Tse-Tse/parasitología
6.
EMBO J ; 33(9): 981-93, 2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24705786

RESUMEN

Identification of the coding elements in the genome is a fundamental step to understanding the building blocks of living systems. Short peptides (< 100 aa) have emerged as important regulators of development and physiology, but their identification has been limited by their size. We have leveraged the periodicity of ribosome movement on the mRNA to define actively translated ORFs by ribosome footprinting. This approach identifies several hundred translated small ORFs in zebrafish and human. Computational prediction of small ORFs from codon conservation patterns corroborates and extends these findings and identifies conserved sequences in zebrafish and human, suggesting functional peptide products (micropeptides). These results identify micropeptide-encoding genes in vertebrates, providing an entry point to define their function in vivo.


Asunto(s)
Secuencia Conservada , Evolución Molecular , Sistemas de Lectura Abierta/genética , ARN Mensajero/genética , Ribosomas/metabolismo , Pez Cebra/genética , Animales , Secuencia de Bases , Biología Computacional , Perfilación de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Ensayos de Protección de Nucleasas , Oligopéptidos/genética , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN/métodos , Pez Cebra/embriología
7.
Proc Natl Acad Sci U S A ; 111(1): 267-72, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24344282

RESUMEN

Retromer is an evolutionarily conserved protein complex composed of the VPS26, VPS29, and VPS35 proteins that selects and packages cargo proteins into transport carriers that export cargo from the endosome. The mechanisms by which retromer is recruited to the endosome and captures cargo are unknown. We show that membrane recruitment of retromer is mediated by bivalent recognition of an effector of PI3K, SNX3, and the RAB7A GTPase, by the VPS35 retromer subunit. These bivalent interactions prime retromer to capture integral membrane cargo, which enhances membrane association of retromer and initiates cargo sorting. The role of RAB7A is severely impaired by a mutation, K157N, that causes Charcot-Marie-Tooth neuropathy 2B. The results elucidate minimal requirements for retromer assembly on the endosome membrane and reveal how PI3K and RAB signaling are coupled to initiate retromer-mediated cargo export.


Asunto(s)
Endosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/química , Transporte Biológico , Proteínas Portadoras/química , Reactivos de Enlaces Cruzados , Humanos , Liposomas/química , Espectrometría de Masas , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Transporte de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Transducción de Señal , Nexinas de Clasificación/química , Proteínas de Unión al GTP rab/química , Proteínas de Unión a GTP rab7
8.
Proteomics ; 16(21): 2759-2763, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27717283

RESUMEN

Sphingolipids are essential components of eukaryotic cells with important functions in membrane biology and cellular signaling. Their levels are tightly controlled and coordinated with the abundance of other membrane lipids. How sphingolipid homeostasis is achieved is not yet well understood. Studies performed primarily in yeast showed that the phosphorylation states of several enzymes and regulators of sphingolipid synthesis are important, although a global understanding for such regulation is lacking. Here, we used high-resolution MS-based proteomics and phosphoproteomics to analyze the cellular response to sphingolipid synthesis inhibition. Our dataset reveals that changes in protein phosphorylation, rather than protein abundance, dominate the response to blocking sphingolipid synthesis. We identified Ypk signaling as a pathway likely to be activated under these conditions, and we identified potential Ypk1 target proteins. Our data provide a rich resource for on-going mechanistic studies of key elements of the cellular response to the depletion of sphingolipid levels and the maintenance of sphingolipid homeostasis. All MS data have been deposited in the ProteomeXchange with identifier PXD003854 (http://proteomecentral.proteomexchange.org/dataset/PXD003854).


Asunto(s)
Proteínas Serina-Treonina Quinasas/genética , Proteómica , Proteínas de Saccharomyces cerevisiae/genética , Esfingolípidos/genética , Homeostasis/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transducción de Señal , Esfingolípidos/metabolismo
9.
J Biol Chem ; 290(7): 4238-47, 2015 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-25519905

RESUMEN

Sphingolipids are essential components of eukaryotic membranes, where they serve to maintain membrane integrity. They are important components of membrane trafficking and function in signaling as messenger molecules. Sphingolipids are synthesized de novo from very long-chain fatty acids (VLCFA) and sphingoid long-chain bases, which are amide linked to form ceramide and further processed by addition of various headgroups. Little is known concerning the regulation of VLCFA levels and how cells coordinate their synthesis with the availability of long-chain bases for sphingolipid synthesis. Here we show that Elo2, a key enzyme of VLCFA synthesis, is controlled by signaling of the guanine nucleotide exchange factor Rom2, initiating at the plasma membrane. This pathway controls Elo2 phosphorylation state and VLCFA synthesis. Our data identify a regulatory mechanism for coordinating VLCFA synthesis with sphingolipid metabolism and link signal transduction pathways from the plasma membrane to the regulation of lipids for membrane homeostasis.


Asunto(s)
Acetiltransferasas/metabolismo , Membrana Celular/metabolismo , Ácidos Grasos/metabolismo , Factores de Intercambio de Guanina Nucleótido/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esfingolípidos/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Homeostasis , Metabolismo de los Lípidos , Fosforilación , Saccharomyces cerevisiae/crecimiento & desarrollo , Transducción de Señal
10.
Mol Cell Proteomics ; 12(7): 1995-2005, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23592334

RESUMEN

Mass spectrometry (MS)-based quantitative proteomics has matured into a methodology able to detect and quantitate essentially all proteins of model microorganisms, allowing for unprecedented depth in systematic protein analyses. The most accurate quantitation approaches currently require lysine auxotrophic strains, which precludes analysis of most existing mutants, strain collections, or commercially important strains (e.g. those used for brewing or for the biotechnological production of metabolites). Here, we used MS-based proteomics to determine the global response of prototrophic yeast and bacteria to exogenous lysine. Unexpectedly, down-regulation of lysine synthesis in the presence of exogenous lysine is achieved via different mechanisms in different yeast strains. In each case, however, lysine in the medium down-regulates its biosynthesis, allowing for metabolic proteome labeling with heavy-isotope-containing lysine. This strategy of native stable isotope labeling by amino acids in cell culture (nSILAC) overcomes the limitations of previous approaches and can be used for the efficient production of protein standards for absolute SILAC quantitation in model microorganisms. As proof of principle, we have used nSILAC to globally analyze yeast proteome changes during salt stress.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Lisina/metabolismo , Proteómica/métodos , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Marcaje Isotópico , Espectrometría de Masas , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
11.
J Lipid Res ; 55(7): 1465-77, 2014 07.
Artículo en Inglés | MEDLINE | ID: mdl-24868093

RESUMEN

Accurate protein inventories are essential for understanding an organelle's functions. The lipid droplet (LD) is a ubiquitous intracellular organelle with major functions in lipid storage and metabolism. LDs differ from other organelles because they are bounded by a surface monolayer, presenting unique features for protein targeting to LDs. Many proteins of varied functions have been found in purified LD fractions by proteomics. While these studies have become increasingly sensitive, it is often unclear which of the identified proteins are specific to LDs. Here we used protein correlation profiling to identify 35 proteins that specifically enrich with LD fractions of Saccharomyces cerevisiae Of these candidates, 30 fluorophore-tagged proteins localize to LDs by microscopy, including six proteins, several with human orthologs linked to diseases, which we newly identify as LD proteins (Cab5, Rer2, Say1, Tsc10, YKL047W, and YPR147C). Two of these proteins, Say1, a sterol deacetylase, and Rer2, a cis-isoprenyl transferase, are enzymes involved in sterol and polyprenol metabolism, respectively, and we show their activities are present in LD fractions. Our results provide a highly specific list of yeast LD proteins and reveal that the vast majority of these proteins are involved in lipid metabolism.


Asunto(s)
Dolicoles/biosíntesis , Gotas Lipídicas/metabolismo , Metabolismo de los Lípidos/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Esteroles/metabolismo , Acetilación , Dolicoles/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
12.
Biol Cell ; 102(6): 351-9, 2010 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-20100171

RESUMEN

BACKGROUND INFORMATION: The integrated analysis of intracellular trafficking pathways is one of the current challenges in the field of cell biology, and functional proteomics has become a powerful technique for the large-scale identification of proteins or lipids and the elucidation of biological processes in their natural contexts. For this, new dynamic strategies must be devised to trace proteins that follow a specific pathway such that their initial and final destinations can be detected by automated means. RESULTS: Here, we report a novel vectorial strategy for trafficking pathway analysis. This strategy is based on a chemical modification of plasma membrane proteins with a bSuPeR (biotinylated sulfation site peptide reagent) and metabolic labelling in the Golgi apparatus, such that plasma membrane proteins that traffic via the retrograde route become detectable in complex mixtures. Efficient synthesis schemes are presented for tailor-made chemical tools that are then applied to the step-by-step validation of the strategy, using a known retrograde cargo protein: the STxB (Shiga toxin B-subunit). bSuPeR modification at the plasma membrane does not affect STxB transport to the Golgi apparatus, where the protein is metabolically labelled, allowing its detection in cell lysates. CONCLUSIONS: Our vectorial concept proposes a new chemical approach for traffic-based profiling of proteins that may prove to be applicable to the analysis of diverse endocytic pathways.


Asunto(s)
Endocitosis/fisiología , Transporte de Proteínas/fisiología , Proteómica/métodos , Membrana Celular/metabolismo , Técnica del Anticuerpo Fluorescente Indirecta , Aparato de Golgi/metabolismo , Células HeLa , Humanos
13.
Bioconjug Chem ; 21(2): 219-28, 2010 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-20053001

RESUMEN

Peptide-protein conjugates are useful tools in different fields of research as, for instance, the development of vaccines and drugs or for studying biological mechanisms, to cite only few applications. N-Succinimidyl carbamate (NSC) chemistry has been scarcely used in this area. We show that unprotected peptides, featuring one lysine residue within their sequences, can be converted in good yield into NSC derivatives by reaction with disuccinimidylcarbonate (DSC). No hydrolysis of the NSC group was observed during RP-HPLC purification, lyophilization, or storage. NSC peptides reacted efficiently within minutes with lysozyme used as model protein. To illustrate usefulness of the method consisting of the synthesis of a peptide-protein conjugate of biological interest, a NSC peptide derived from a peptide substrate for tyrosylprotein sulfotransferase (TS) was synthesized and ligated to receptor-binding nontoxic B-subunit of Shiga toxin (STxB). Immunofluorescence studies showed the intracellular delivery of the TS-STxB conjugate and its ability to circulate to the Golgi as the native STxB protein. Moreover, we demonstrate that the TS label could be sulfated by tyrosylprotein sulfotransferases present in the Golgi. Thus, NSC chemistry permitted rapid synthesis of a peptide-protein conjugate worthwhile for studying the transport of proteins from the plasma membrane to the Golgi. The second part of this article describes a more general method for synthesizing peptide-protein conjugates without any limitation of the peptide sequence. The conjugates were assembled by combining NSC chemistry and alpha-oxo semicarbazone ligation. To this end, a glyoxylyl NSC peptide was synthesized and reacted with lysozyme. The glyoxylyl groups on the protein were then reacted with a semicarbazide peptide to produce the target peptide-protein conjugate. Both reactions, namely, urea bond formation and alpha-oxo semicarbazone ligation, were carried at pH 8.0 using a one-pot procedure.


Asunto(s)
Carbamatos/química , Péptidos/química , Péptidos/síntesis química , Proteínas/química , Proteínas/síntesis química , Succinatos/química , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Células HeLa , Humanos , Concentración de Iones de Hidrógeno , Muramidasa/química , Muramidasa/metabolismo , Péptidos/aislamiento & purificación , Péptidos/metabolismo , Estabilidad Proteica , Transporte de Proteínas , Proteínas/aislamiento & purificación , Proteínas/metabolismo
14.
Cell Rep ; 33(6): 108378, 2020 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-33176155

RESUMEN

Protein degradation is mediated by an expansive and complex network of protein modification and degradation enzymes. Matching degradation enzymes with their targets and determining globally which proteins are degraded by the proteasome or lysosome/vacuole have been a major challenge. Furthermore, an integrated view of protein degradation for cellular pathways has been lacking. Here, we present an analytical platform that combines systematic gene deletions with quantitative measures of protein turnover to deconvolve protein degradation pathways for Saccharomyces cerevisiae. The resulting turnover map (T-MAP) reveals target candidates of nearly all E2 and E3 ubiquitin ligases and identifies the primary degradation routes for most proteins. We further mined this T-MAP to identify new substrates of ER-associated degradation (ERAD) involved in sterol biosynthesis and to uncover regulatory nodes for sphingolipid biosynthesis. The T-MAP approach should be broadly applicable to the study of other cellular processes, including mammalian systems.


Asunto(s)
Proteolisis , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo
15.
FEBS Lett ; 591(18): 2793-2802, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28777890

RESUMEN

Golgin45 plays important roles in Golgi stack assembly and is known to bind both the Golgi stacking protein GRASP55 and Rab2 in the medial-Golgi cisternae. In this study, we sought to further characterize the cisternal adhesion complex using a proteomics approach. We report here that Acyl-CoA binding domain containing 3 (ACBD3) is likely to be a novel binding partner of Golgin45. ACBD3 interacts with Golgin45 via its GOLD domain, while its co-expression significantly increases Golgin45 targeting to the Golgi. Furthermore, ACBD3 recruits TBC1D22, a Rab33b GTPase activating protein (GAP), to a large multi-protein complex containing Golgin45 and GRASP55. These results suggest that ACBD3 may provide a scaffolding to organize the Golgi stacking proteins and a Rab33b-GAP at the medial-Golgi.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Activadoras de GTPasa/metabolismo , Aparato de Golgi/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Técnica del Anticuerpo Fluorescente , Proteínas Activadoras de GTPasa/química , Células HeLa , Humanos , Immunoblotting , Proteínas de la Membrana/química , Microscopía Confocal , Unión Proteica , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/química
16.
Nat Cell Biol ; 18(1): 132-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26571211

RESUMEN

Genetic defects in myelin formation and maintenance cause leukodystrophies, a group of white matter diseases whose mechanistic underpinnings are poorly understood. Hypomyelination and congenital cataract (HCC), one of these disorders, is caused by mutations in FAM126A, a gene of unknown function. We show that FAM126A, also known as hyccin, regulates the synthesis of phosphatidylinositol 4-phosphate (PtdIns(4)P), a determinant of plasma membrane identity. HCC patient fibroblasts exhibit reduced PtdIns(4)P levels. FAM126A is an intrinsic component of the plasma membrane phosphatidylinositol 4-kinase complex that comprises PI4KIIIα and its adaptors TTC7 and EFR3 (refs 5,7). A FAM126A-TTC7 co-crystal structure reveals an all-α-helical heterodimer with a large protein-protein interface and a conserved surface that may mediate binding to PI4KIIIα. Absence of FAM126A, the predominant FAM126 isoform in oligodendrocytes, destabilizes the PI4KIIIα complex in mouse brain and patient fibroblasts. We propose that HCC pathogenesis involves defects in PtdIns(4)P production in oligodendrocytes, whose specialized function requires massive plasma membrane expansion and thus generation of PtdIns(4)P and downstream phosphoinositides. Our results point to a role for FAM126A in supporting myelination, an important process in development and also following acute exacerbations in multiple sclerosis.


Asunto(s)
Membrana Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Fosfatos de Fosfatidilinositol/biosíntesis , Animales , Humanos , Ratones , Mutación/genética , Fosfatos de Fosfatidilinositol/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología
17.
J Cell Biol ; 208(2): 197-209, 2015 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-25583996

RESUMEN

Signal-dependent sorting of proteins in the early secretory pathway is required for dynamic retention of endoplasmic reticulum (ER) and Golgi components. In this study, we identify the Erv41-Erv46 complex as a new retrograde receptor for retrieval of non-HDEL-bearing ER resident proteins. In cells lacking Erv41-Erv46 function, the ER enzyme glucosidase I (Gls1) was mislocalized and degraded in the vacuole. Biochemical experiments demonstrated that the luminal domain of Gls1 bound to the Erv41-Erv46 complex in a pH-dependent manner. Moreover, in vivo disturbance of the pH gradient across membranes by bafilomycin A1 treatment caused Gls1 mislocalization. Whole cell proteomic analyses of deletion strains using stable isotope labeling by amino acids in culture identified other ER resident proteins that depended on the Erv41-Erv46 complex for efficient localization. Our results support a model in which pH-dependent receptor binding of specific cargo by the Erv41-Erv46 complex in Golgi compartments identifies escaped ER resident proteins for retrieval to the ER in coat protein complex I-formed transport carriers.


Asunto(s)
Retículo Endoplásmico/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/química , Unión Proteica , Mapeo de Interacción de Proteínas , Transporte de Proteínas , Proteolisis , Proteínas de Saccharomyces cerevisiae/química , Vacuolas/enzimología , alfa-Glucosidasas/química , alfa-Glucosidasas/metabolismo
18.
Elife ; 42015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26357016

RESUMEN

Sphingolipids are abundant membrane components and important signaling molecules in eukaryotic cells. Their levels and localization are tightly regulated. However, the mechanisms underlying this regulation remain largely unknown. In this study, we identify the Golgi-associated retrograde protein (GARP) complex, which functions in endosome-to-Golgi retrograde vesicular transport, as a critical player in sphingolipid homeostasis. GARP deficiency leads to accumulation of sphingolipid synthesis intermediates, changes in sterol distribution, and lysosomal dysfunction. A GARP complex mutation analogous to a VPS53 allele causing progressive cerebello-cerebral atrophy type 2 (PCCA2) in humans exhibits similar, albeit weaker, phenotypes in yeast, providing mechanistic insights into disease pathogenesis. Inhibition of the first step of de novo sphingolipid synthesis is sufficient to mitigate many of the phenotypes of GARP-deficient yeast or mammalian cells. Together, these data show that GARP is essential for cellular sphingolipid homeostasis and suggest a therapeutic strategy for the treatment of PCCA2.


Asunto(s)
Homeostasis , Proteínas de la Membrana/metabolismo , Esfingolípidos/metabolismo , Células HeLa , Humanos , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
19.
Cell Rep ; 9(5): 1959-1965, 2014 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-25466257

RESUMEN

How cells maintain specific levels of each protein and whether that control is evolutionarily conserved are key questions. Here, we report proteome-wide steady-state protein turnover rate measurements for the evolutionarily distant but ecologically similar yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe. We find that the half-life of most proteins is much longer than currently thought and determined to a large degree by protein synthesis and dilution due to cell division. However, we detect a significant subset of proteins (∼15%) in both yeasts that are turned over rapidly. In addition, the relative abundances of orthologous proteins between the two yeasts are highly conserved across the 400 million years of evolution. In contrast, their respective turnover rates differ considerably. Our data provide a high-confidence resource for studying protein degradation in common yeast model systems.


Asunto(s)
Proteoma/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Degradación Asociada con el Retículo Endoplásmico , Semivida , Proteolisis , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo
20.
Mol Biol Cell ; 25(18): 2797-806, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-25057013

RESUMEN

The plasma membrane delineates the cell and mediates its communication and material exchange with the environment. Many processes of the plasma membrane occur through interactions of proteins with phosphatidylinositol(4,5)-bisphosphate (PI(4,5)P2), which is highly enriched in this membrane and is a key determinant of its identity. Eisosomes function in lateral organization of the plasma membrane, but the molecular function of their major protein subunits, the BAR domain-containing proteins Pil1 and Lsp1, is poorly understood. Here we show that eisosomes interact with the PI(4,5)P2 phosphatase Inp51/Sjl1, thereby recruiting it to the plasma membrane. Pil1 is essential for plasma membrane localization and function of Inp51 but not for the homologous phosphatidylinositol bisphosphate phosphatases Inp52/Sjl2 and Inp53/Sjl3. Consistent with this, absence of Pil1 increases total and available PI(4,5)P2 levels at the plasma membrane. On the basis of these findings, we propose a model in which the eisosomes function in maintaining PI(4,5)P2 levels by Inp51/Sjl1 recruitment.


Asunto(s)
Orgánulos/enzimología , Fosfatidilinositol 4,5-Difosfato/metabolismo , Saccharomyces cerevisiae/metabolismo , Membrana Celular , Orgánulos/fisiología , Fosfoproteínas/fisiología , Monoéster Fosfórico Hidrolasas/fisiología , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA