Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Infect Dis ; 213(2): 276-86, 2016 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-26150544

RESUMEN

Detailed information on the mode of action of antimalarial drugs can be used to improve existing drugs, identify new drug targets, and understand the basis of drug resistance. In this study we describe the use of a time-resolved, mass spectrometry (MS)-based metabolite profiling approach to map the metabolic perturbations induced by a panel of clinical antimalarial drugs and inhibitors on Plasmodium falciparum asexual blood stages. Drug-induced changes in metabolite levels in P. falciparum-infected erythrocytes were monitored over time using gas chromatography-MS and liquid chromatography-MS and changes in specific metabolic fluxes confirmed by nonstationary [(13)C]-glucose labeling. Dihydroartemisinin (DHA) was found to disrupt hemoglobin catabolism within 1 hour of exposure, resulting in a transient decrease in hemoglobin-derived peptides. Unexpectedly, it also disrupted pyrimidine biosynthesis, resulting in increased [(13)C]-glucose flux toward malate production, potentially explaining the susceptibility of P. falciparum to DHA during early blood-stage development. Unique metabolic signatures were also found for atovaquone, chloroquine, proguanil, cycloguanil and methylene blue. We also show that this approach can be used to identify the mode of action of novel antimalarials, such as the compound Torin 2, which inhibits hemoglobin catabolism.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Plasmodium falciparum/efectos de los fármacos , Atovacuona/farmacología , Cloroquina/farmacología , Fosfomicina/análogos & derivados , Fosfomicina/farmacología , Cromatografía de Gases y Espectrometría de Masas , Hemoglobinas/efectos de los fármacos , Hemoglobinas/metabolismo , Concentración 50 Inhibidora , Azul de Metileno/farmacología , Naftiridinas/farmacología , Plasmodium falciparum/metabolismo , Proguanil/farmacología , Triazinas/farmacología
2.
Antimicrob Agents Chemother ; 60(11): 6650-6663, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27572396

RESUMEN

High-throughput phenotypic screening of chemical libraries has resulted in the identification of thousands of compounds with potent antimalarial activity, although in most cases, the mechanism(s) of action of these compounds remains unknown. Here we have investigated the mode of action of 90 antimalarial compounds derived from the Malaria Box collection using high-coverage, untargeted metabolomics analysis. Approximately half of the tested compounds induced significant metabolic perturbations in in vitro cultures of Plasmodium falciparum In most cases, the metabolic profiles were highly correlated with known antimalarials, in particular artemisinin, the 4-aminoquinolines, or atovaquone. Select Malaria Box compounds also induced changes in intermediates in essential metabolic pathways, such as isoprenoid biosynthesis (i.e., 2-C-methyl-d-erythritol 2,4-cyclodiphosphate) and linolenic acid metabolism (i.e., traumatic acid). This study provides a comprehensive database of the metabolic perturbations induced by chemically diverse inhibitors and highlights the utility of metabolomics for triaging new lead compounds and defining specific modes of action, which will assist with the development and optimization of new antimalarial drugs.


Asunto(s)
Antimaláricos/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Terapia Molecular Dirigida/métodos , Plasmodium falciparum/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Aminoquinolinas/farmacología , Antimaláricos/química , Artemisininas/farmacología , Atovacuona/farmacología , Células Cultivadas , Cromatografía Liquida/métodos , Análisis por Conglomerados , Bases de Datos de Compuestos Químicos , Ácidos Dicarboxílicos/antagonistas & inhibidores , Ácidos Dicarboxílicos/metabolismo , Resistencia a Medicamentos/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Humanos , Metabolómica/métodos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Espectrometría de Masas en Tándem , Terpenos/antagonistas & inhibidores , Terpenos/metabolismo
3.
BMC Biol ; 11: 67, 2013 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-23763941

RESUMEN

BACKGROUND: The carbon metabolism of the blood stages of Plasmodium falciparum, comprising rapidly dividing asexual stages and non-dividing gametocytes, is thought to be highly streamlined, with glycolysis providing most of the cellular ATP. However, these parasitic stages express all the enzymes needed for a canonical mitochondrial tricarboxylic acid (TCA) cycle, and it was recently proposed that they may catabolize glutamine via an atypical branched TCA cycle. Whether these stages catabolize glucose in the TCA cycle and what is the functional significance of mitochondrial metabolism remains unresolved. RESULTS: We reassessed the central carbon metabolism of P. falciparum asexual and sexual blood stages, by metabolically labeling each stage with 13C-glucose and 13C-glutamine, and analyzing isotopic enrichment in key pathways using mass spectrometry. In contrast to previous findings, we found that carbon skeletons derived from both glucose and glutamine are catabolized in a canonical oxidative TCA cycle in both the asexual and sexual blood stages. Flux of glucose carbon skeletons into the TCA cycle is low in the asexual blood stages, with glutamine providing most of the carbon skeletons, but increases dramatically in the gametocyte stages. Increased glucose catabolism in the gametocyte TCA cycle was associated with increased glucose uptake, suggesting that the energy requirements of this stage are high. Significantly, whereas chemical inhibition of the TCA cycle had little effect on the growth or viability of asexual stages, inhibition of the gametocyte TCA cycle led to arrested development and death. CONCLUSIONS: Our metabolomics approach has allowed us to revise current models of P. falciparum carbon metabolism. In particular, we found that both asexual and sexual blood stages utilize a conventional TCA cycle to catabolize glucose and glutamine. Gametocyte differentiation is associated with a programmed remodeling of central carbon metabolism that may be required for parasite survival either before or after uptake by the mosquito vector. The increased sensitivity of gametocyte stages to TCA-cycle inhibitors provides a potential target for transmission-blocking drugs.


Asunto(s)
Estadios del Ciclo de Vida , Malaria Falciparum/parasitología , Mitocondrias/metabolismo , Parásitos/crecimiento & desarrollo , Parásitos/metabolismo , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Animales , Ciclo del Ácido Cítrico/efectos de los fármacos , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Fluoroacetatos/farmacología , Cromatografía de Gases y Espectrometría de Masas , Glucosa/metabolismo , Glutamina/metabolismo , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Mitocondrias/efectos de los fármacos , Modelos Biológicos , Parásitos/efectos de los fármacos , Plasmodium falciparum/efectos de los fármacos , Reproducción Asexuada/efectos de los fármacos
4.
Artículo en Inglés | MEDLINE | ID: mdl-28861398

RESUMEN

Fungal infections are an increasing public health problem, particularly in immunocompromised individuals. While these pathogenic fungi show polyphyletic origins with closely related non-pathogenic species, many undergo morphological transitions to produce pathogenic cell types that are associated with increased virulence. However, the characteristics of these pathogenic cells that contribute to virulence are poorly defined. Talaromyces marneffei grows as a non-pathogenic hyphal form at 25°C but undergoes a dimorphic transition to a pathogenic yeast form at 37°C in vitro and following inhalation of asexual conidia by a host. Here we show that this transition is associated with major changes in central carbon metabolism, and that these changes are correlated with increased virulence of the yeast form. Comprehensive metabolite profiling and 13C-labeling studies showed that hyphal cells exhibited very active glycolytic metabolism and contain low levels of internal carbohydrate reserves. In contrast, yeast cells fully catabolized glucose in the mitochondrial TCA cycle, and store excess glucose in large intracellular pools of trehalose and mannitol. Inhibition of the yeast TCA cycle inhibited replication in culture and in host cells. Yeast, but not hyphae, were also able to use myo-inositol and amino acids as secondary carbon sources, which may support their survival in host macrophages. These analyses suggest that T. marneffei yeast cells exhibit a more efficient oxidative metabolism and are capable of utilizing a diverse range of carbon sources, which contributes to their virulence in animal tissues, highlighting the importance of dimorphic switching in pathogenic yeast.


Asunto(s)
Metabolómica , Talaromyces/crecimiento & desarrollo , Talaromyces/metabolismo , Talaromyces/patogenicidad , Aminoácidos/metabolismo , Animales , Metabolismo de los Hidratos de Carbono , Carbono/metabolismo , Ciclo del Ácido Cítrico , Regulación Fúngica de la Expresión Génica , Interacciones Huésped-Patógeno/fisiología , Humanos , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Inositol/metabolismo , Macrófagos/microbiología , Mitocondrias/metabolismo , Micosis , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo , Coloración y Etiquetado , Células THP-1 , Talaromyces/citología , Temperatura , Virulencia , Levaduras/citología , Levaduras/crecimiento & desarrollo , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA