Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(16): 164001, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37925699

RESUMEN

Molecular simulations discover a new mode of dynamic wetting that manifests itself in the very earliest stages of spreading, after a droplet contacts a solid. The observed mode is a "rolling" type of motion, characterized by a contact angle lower than the classically assumed value of 180°, and precedes the conventional "sliding" mode of spreading. This motivates the development of a novel continuum framework that captures all modes of motion, allows the dominant physical mechanisms to be understood, and permits the study of larger droplets.

2.
Phys Rev Lett ; 131(16): 168201, 2023 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-37925690

RESUMEN

The elastic Leidenfrost effect occurs when a vaporizable soft solid is lowered onto a hot surface. Evaporative flow couples to elastic deformation, giving spontaneous bouncing or steady-state floating. The effect embodies an unexplored interplay between thermodynamics, elasticity, and lubrication: despite being observed, its basic theoretical description remains a challenge. Here, we provide a theory of elastic Leidenfrost floating. As weight increases, a rigid solid sits closer to the hot surface. By contrast, we discover an elasticity-dominated regime where the heavier the solid, the higher it floats. This geometry-governed behavior is reminiscent of the dynamics of large liquid Leidenfrost drops. We show that this elastic regime is characterized by Hertzian behavior of the solid's underbelly and derive how the float height scales with materials parameters. Introducing a dimensionless elastic Leidenfrost number, we capture the crossover between rigid and Hertzian behavior. Our results provide theoretical underpinning for recent experiments, and point to the design of novel soft machines.

3.
Phys Rev Lett ; 124(8): 084501, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32167351

RESUMEN

A model is developed for liquid drop impact on a solid surface that captures the thin film gas flow beneath the drop, even when the film's thickness is below the mean free path in the gas so that gas kinetic effects (GKE) are important. Simulation results agree with experiments, with the impact speed threshold between bouncing and wetting reproduced to within 5%, while a model without GKE overpredicts this value by at least 50%. To isolate GKE, the pressure dependence of the threshold is mapped and provides experimentally verifiable predictions. There are two principal modes of contact leading to wetting and both are associated with a van der Waals driven instability of the film.

4.
Phys Rev Lett ; 122(10): 104501, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30932677

RESUMEN

The classical notion of the coalescence of two droplets of the same radius R is that surface tension drives an initially singular flow. In this Letter we show, using molecular dynamics simulations of coalescing water nanodroplets, that after single or multiple bridges form due to the presence of thermal capillary waves, the bridge growth commences in a thermal regime. Here, the bridges expand linearly in time much faster than the viscous-capillary speed due to collective molecular jumps near the bridge fronts. Transition to the classical hydrodynamic regime only occurs once the bridge radius exceeds a thermal length scale l_{T}∼sqrt[R].

5.
Electrophoresis ; 35(5): 596-604, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24375057

RESUMEN

In the theory of free-solution electrophoresis of a polyelectrolyte (such as the DNA) conjugated with a "drag-tag," the conjugate is divided into segments of equal hydrodynamic friction and its electrophoretic mobility is calculated as a weighted average of the mobilities of individual segments. If all the weights are assumed equal, then for an electrically neutral drag-tag, the elution time t is predicted to depend linearly on the inverse DNA length 1/M. While it is well-known that the equal-weights assumption is approximate and in reality the weights increase toward the ends, this "end effect" has been assumed to be small, since in experiments the t(1/M) dependence seems to be nearly perfectly linear. We challenge this assumption pointing out that some experimental linear fits do not extrapolate to the free (i.e. untagged) DNA elution time in the limit 1/M→0, indicating nonlinearity outside the fitting range. We show that a theory for a flexible polymer taking the end effect into account produces a nonlinear curve that, however, can be fitted with a straight line over a limited range of 1/M typical of experiments, but with a "wrong" intercept, which explains the experimental results without additional assumptions. We also study the influence of the flexibilities of the charged and neutral parts.


Asunto(s)
ADN/análisis , Electroforesis/métodos , ADN/química , Modelos Teóricos , Soluciones
6.
Phys Rev Lett ; 113(9): 098302, 2014 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-25216011

RESUMEN

Wang et al. [Proc. Natl. Acad. Sci. U.S.A. 106, 15160 (2009)] have found that in several systems the linear time dependence of the mean-square displacement (MSD) of diffusing colloidal particles, typical of normal diffusion, is accompanied by a non-Gaussian displacement distribution G(x,t), with roughly exponential tails at short times, a situation they termed "anomalous yet Brownian" diffusion. The diversity of systems in which this is observed calls for a generic model. We present such a model where there is diffusivity memory but no direction memory in the particle trajectory, and we show that it leads to both a linear MSD and a non-Gaussian G(x,t) at short times. In our model, the diffusivity is undergoing a (perhaps biased) random walk, hence the expression "diffusing diffusivity". G(x,t) is predicted to be exactly exponential at short times if the distribution of diffusivities is itself exponential, but an exponential remains a good fit for a variety of diffusivity distributions. Moreover, our generic model can be modified to produce subdiffusion.

7.
Comput Struct Biotechnol J ; 20: 128-138, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34976317

RESUMEN

Environmental structure describes physical structure that can determine heterogenous spatial distribution of biotic and abiotic (nutrients, stressors etc.) components of a microorganism's microenvironment. This study investigated the impact of micrometre-scale structure on microbial stress sensing, using yeast cells exposed to copper in microfluidic devices comprising either complex soil-like architectures or simplified environmental structures. In the soil micromodels, the responses of individual cells to inflowing medium supplemented with high copper (using cells expressing a copper-responsive pCUP1-reporter fusion) could be described neither by spatial metrics developed to quantify proximity to environmental structures and surrounding space, nor by computational modelling of fluid flow in the systems. In contrast, the proximities of cells to structures did correlate with their responses to elevated copper in microfluidic chambers that contained simplified environmental structure. Here, cells within more open spaces showed the stronger responses to the copper-supplemented inflow. These insights highlight not only the importance of structure for microbial responses to their chemical environment, but also how predictive modelling of these interactions can depend on complexity of the system, even when deploying controlled laboratory conditions and microfluidics.

8.
Electrophoresis ; 30(5): 792-818, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19260004

RESUMEN

Theory and numerical simulations play a major role in the development of improved and novel separation methods. In some cases, computer simulations predict counterintuitive effects that must be taken into account in order to properly optimize a device. In other cases, simulations allow the scientist to focus on a subset of important system parameters. Occasionally, simulations even generate entirely new separation ideas! In this article, we review the main simulation methods that are currently being used to model separation techniques of interest to the readers of Electrophoresis. In the first part of the article, we provide a brief description of the numerical models themselves, starting with molecular methods and then moving towards more efficient coarse-grained approaches. In the second part, we briefly examine nine separation problems and some of the methods used to model them. We conclude with a short discussion of some notoriously hard-to-model separation problems and a description of some of the available simulation software packages.


Asunto(s)
Simulación por Computador , Electroforesis/métodos , Sustancias Macromoleculares/aislamiento & purificación , Técnicas Analíticas Microfluídicas/métodos , Modelos Químicos , Algoritmos , Sustancias Macromoleculares/química , Método de Montecarlo
9.
Phys Rev E ; 96(4-1): 042604, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29347613

RESUMEN

The mechanism of diffusing diffusivity predicts that, in environments where the diffusivity changes gradually, the displacement distribution becomes non-Gaussian, even though the mean-square displacement grows linearly with time. Here, we report single-particle tracking measurements of the diffusion of colloidal spheres near a planar substrate. Because the local effective diffusivity is known, we have been able to carry out a direct test of this mechanism for diffusion in inhomogeneous media.

10.
Phys Rev E Stat Nonlin Soft Matter Phys ; 85(1 Pt 2): 016709, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22400703

RESUMEN

The behavior of a lattice Monte Carlo (LMC) algorithm (if it is designed correctly) must approach that of the continuum system that it is designed to simulate as the time step and the mesh step tend to zero. However, we show for an algorithm for unbiased particle diffusion that if one of these two parameters remains fixed, the accuracy of the algorithm is optimal for a certain finite value of the other parameter. In one dimension, the optimal algorithm with moves to the two nearest neighbor sites reproduces the correct second and fourth moments (and minimizes the error for the higher moments at large times) of the particle distribution and preserves the first two moments of the first-passage time distributions. In two and three dimensions, the same level of accuracy requires simultaneous moves along two axes ("diagonal" moves). Such moves attempting to cross an impenetrable boundary should be projected along the boundary, rather than simply rejected. We also treat the case of absorbing boundaries. We discuss the relation between optimally accurate LMC algorithms and a particular case of lattice Boltzmann (LB) algorithms for simulating diffusion and compare the computational efficiency of optimal LMC and optimal LB algorithms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA