Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-34006644

RESUMEN

The COVID-19 pandemic triggered an unparalleled pursuit of vaccines to induce specific adaptive immunity, based on virus-neutralizing antibodies and T cell responses. Although several vaccines have been developed just a year after SARS-CoV-2 emerged in late 2019, global deployment will take months or even years. Meanwhile, the virus continues to take a severe toll on human life and exact substantial economic costs. Innate immunity is fundamental to mammalian host defense capacity to combat infections. Innate immune responses, triggered by a family of pattern recognition receptors, induce interferons and other cytokines and activate both myeloid and lymphoid immune cells to provide protection against a wide range of pathogens. Epidemiological and biological evidence suggests that the live-attenuated vaccines (LAV) targeting tuberculosis, measles, and polio induce protective innate immunity by a newly described form of immunological memory termed "trained immunity." An LAV designed to induce adaptive immunity targeting a particular pathogen may also induce innate immunity that mitigates other infectious diseases, including COVID-19, as well as future pandemic threats. Deployment of existing LAVs early in pandemics could complement the development of specific vaccines, bridging the protection gap until specific vaccines arrive. The broad protection induced by LAVs would not be compromised by potential antigenic drift (immune escape) that can render viruses resistant to specific vaccines. LAVs might offer an essential tool to "bend the pandemic curve," averting the exhaustion of public health resources and preventing needless deaths and may also have therapeutic benefits if used for postexposure prophylaxis of disease.


Asunto(s)
COVID-19/prevención & control , Inmunidad Innata , Pandemias/prevención & control , Vacunas/inmunología , Inmunidad Adaptativa , COVID-19/inmunología , Vacunas contra la COVID-19/inmunología , Inmunidad Heteróloga , Memoria Inmunológica , SARS-CoV-2/inmunología , Vacunas Atenuadas/inmunología
2.
J Virol ; 95(22): e0097721, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34468175

RESUMEN

Here, we examine in silico the infection dynamics and interactions of two Zika virus (ZIKV) genomes: one is the full-length ZIKV genome (wild type [WT]), and the other is one of the naturally occurring defective viral genomes (DVGs), which can replicate in the presence of the WT genome, appears under high-MOI (multiplicity of infection) passaging conditions, and carries a deletion encompassing part of the structural and NS1 protein-coding region. Ordinary differential equations (ODEs) were used to simulate the infection of cells by virus particles and the intracellular replication of the WT and DVG genomes that produce these particles. For each virus passage in Vero and C6/36 cell cultures, the rates of the simulated processes were fitted to two types of observations: virus titer data and the assembled haplotypes of the replicate passage samples. We studied the consistency of the model with the experimental data across all passages of infection in each cell type separately as well as the sensitivity of the model's parameters. We also determined which simulated processes of virus evolution are the most important for the adaptation of the WT and DVG interplay in these two disparate cell culture environments. Our results demonstrate that in the majority of passages, the rates of DVG production are higher inC6/36 cells than in Vero cells, which might result in tolerance and therefore drive the persistence of the mosquito vector in the context of ZIKV infection. Additionally, the model simulations showed a slower accumulation of infected cells under higher activation of the DVG-associated processes, which indicates a potential role of DVGs in virus attenuation. IMPORTANCE One of the ideas for lessening Zika pathogenicity is the addition of its natural or engineered defective virus genomes (DVGs) (have no pathogenicity) to the infection pool: a DVG is redirecting the wild-type (WT)-associated virus development resources toward its own maturation. The mathematical model presented here, attuned to the data from interplays between WT Zika viruses and their natural DVGs in mammalian and mosquito cells, provides evidence that the loss of uninfected cells is attenuated by the DVG development processes. This model enabled us to estimate the rates of virus development processes in the WT/DVG interplay, determine the key processes, and show that the key processes are faster in mosquito cells than in mammalian ones. In general, the presented model and its detailed study suggest in what important virus development processes the therapeutically efficient DVG might compete with the WT; this may help in assembling engineered DVGs for ZIKV and other flaviviruses.


Asunto(s)
Virus Defectuosos , Interacciones Microbiota-Huesped , Infección por el Virus Zika/virología , Virus Zika , Aedes , Animales , Chlorocebus aethiops , Virus Defectuosos/crecimiento & desarrollo , Virus Defectuosos/patogenicidad , Células Vero , Replicación Viral , Virus Zika/crecimiento & desarrollo , Virus Zika/patogenicidad
5.
J Infect Dis ; 222(11): 1920-1927, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-32492703

RESUMEN

BACKGROUND: Next-generation sequencing (NGS) analysis was compared to the current MAPREC (mutational analysis by polymerase chain reaction and restriction enzyme cleavage) assay for quality control of live-attenuated oral polio vaccine (OPV). METHODS: MAPREC measures reversion of the main OPV attenuating mutations such as uracil (U) to cytosine (C) at nucleotide 472 in the 5' noncoding region of type 3 OPV. Eleven type 3 OPV samples were analyzed by 8 laboratories using their in-house NGS method. RESULTS: Intraassay, intralaboratory, and interlaboratory variability of NGS 472-C estimates across samples and laboratories were very low, leading to excellent agreement between laboratories. A high degree of correlation between %472-C results by MAPREC and NGS was observed in all laboratories (Pearson correlation coefficient r = 0.996). NGS estimates of sequences at nucleotide 2493 with known polymorphism among type 3 OPV lots also produced low assay variability and excellent between-laboratory agreement. CONCLUSIONS: The high consistency of NGS data demonstrates that NGS analysis can be used as high-resolution test alternative to MAPREC, producing whole-genome profiles to evaluate OPV production consistency, possibly eliminating the need for tests in animals. This would be very beneficial for the quality assessment of next-generation polio vaccines and, eventually, for other live-attenuated viral vaccines.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Poliomielitis/prevención & control , Vacuna Antipolio Oral/normas , Control de Calidad , Vacunas Atenuadas/normas , Animales , Humanos , Mutación , Poliovirus , Reacción en Cadena de la Polimerasa/métodos
6.
PLoS Pathog ; 14(3): e1006943, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29554133

RESUMEN

Deep sequencing was used to determine complete nucleotide sequences of echovirus 11 (EV11) strains isolated from a chronically infected patient with CVID as well as from cases of acute enterovirus infection. Phylogenetic analysis showed that EV11 strains that circulated in Israel in 1980-90s could be divided into four clades. EV11 strains isolated from a chronically infected individual belonged to one of the four clades and over a period of 4 years accumulated mutations at a relatively constant rate. Extrapolation of mutations accumulation curve into the past suggested that the individual was infected with circulating EV11 in the first half of 1990s. Genomic regions coding for individual viral proteins did not appear to be under strong selective pressure except for protease 3C that was remarkably conserved. This may suggest its important role in maintaining persistent infection.


Asunto(s)
Evolución Biológica , Enterovirus Humano B/genética , Enterovirus Humano B/aislamiento & purificación , Infecciones por Enterovirus/virología , Genoma Viral , Huésped Inmunocomprometido , Proteínas Virales/metabolismo , Regiones no Traducidas 3' , Enterovirus Humano B/clasificación , Genómica/métodos , Humanos , Filogenia , Proteínas Virales/genética
7.
J Virol ; 92(17)2018 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-29925653

RESUMEN

The poliovirus eradication initiative has spawned global immunization infrastructure and dramatically decreased the prevalence of the disease, yet the original virus eradication goal has not been met. The suboptimal properties of the existing vaccines are among the major reasons why the program has repeatedly missed eradication deadlines. Oral live poliovirus vaccine (OPV), while affordable and effective, occasionally causes the disease in the primary recipients, and the attenuated viruses rapidly regain virulence and can cause poliomyelitis outbreaks. Inactivated poliovirus vaccine (IPV) is safe but expensive and does not induce the mucosal immunity necessary to interrupt virus transmission. While the need for a better vaccine is widely recognized, current efforts are focused largely on improvements to the OPV or IPV, which are still beset by the fundamental drawbacks of the original products. Here we demonstrate a different design of an antipoliovirus vaccine based on in situ production of virus-like particles (VLPs). The poliovirus capsid protein precursor, together with a protease required for its processing, are expressed from a Newcastle disease virus (NDV) vector, a negative-strand RNA virus with mucosal tropism. In this system, poliovirus VLPs are produced in the cells of vaccine recipients and are presented to their immune systems in the context of active replication of NDV, which serves as a natural adjuvant. Intranasal administration of the vectored vaccine to guinea pigs induced strong neutralizing systemic and mucosal antibody responses. Thus, the vectored poliovirus vaccine combines the affordability and efficiency of a live vaccine with absolute safety, since no full-length poliovirus genome is present at any stage of the vaccine life cycle.IMPORTANCE A new, safe, and effective vaccine against poliovirus is urgently needed not only to complete the eradication of the virus but also to be used in the future to prevent possible virus reemergence in a postpolio world. Currently, new formulations of the oral vaccine, as well as improvements to the inactivated vaccine, are being explored. In this study, we designed a viral vector with mucosal tropism that expresses poliovirus capsid proteins. Thus, poliovirus VLPs are produced in vivo, in the cells of a vaccine recipient, and are presented to the immune system in the context of vector virus replication, stimulating the development of systemic and mucosal immune responses. Such an approach allows the development of an affordable and safe vaccine that does not rely on the full-length poliovirus genome at any stage.


Asunto(s)
Vectores Genéticos , Virus de la Enfermedad de Newcastle/genética , Poliomielitis/prevención & control , Vacunas contra Poliovirus/inmunología , Poliovirus/genética , Vacunas de Partículas Similares a Virus/inmunología , Animales , Anticuerpos Antivirales/sangre , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Cobayas , Inmunidad Mucosa , Inmunoglobulina A/inmunología , Inmunoglobulina G/inmunología , Virus de la Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/fisiología , Poliomielitis/inmunología , Poliomielitis/virología , Poliovirus/enzimología , Poliovirus/inmunología , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacuna Antipolio de Virus Inactivados/efectos adversos , Vacuna Antipolio de Virus Inactivados/genética , Vacuna Antipolio de Virus Inactivados/inmunología , Vacunas contra Poliovirus/efectos adversos , Vacunas contra Poliovirus/normas , Vacunación , Vacunas Vivas no Atenuadas/administración & dosificación , Vacunas Vivas no Atenuadas/efectos adversos , Vacunas Vivas no Atenuadas/genética , Vacunas Vivas no Atenuadas/inmunología , Vacunas de Partículas Similares a Virus/administración & dosificación , Vacunas de Partículas Similares a Virus/efectos adversos , Vacunas de Partículas Similares a Virus/genética
8.
Virol J ; 16(1): 122, 2019 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-31660997

RESUMEN

BACKGROUND: Conventional assays to titrate polioviruses usually test serial dilutions inoculated into replicate cell cultures to determine a 50% cytopathic endpoint, a process that is both time-consuming and laborious. Such a method is still used to measure potency of live Oral Poliovirus Vaccine during vaccine development and production and in some clinical trials. However, the conventional method is not suited to identify and titrate virus in the large numbers of fecal samples generated during clinical trials. Determining titers of each of the three Sabin strains co-existing in Oral Poliovirus Vaccine presents an additional challenge. RESULTS: A new assay using quantitative multiplex polymerase chain reaction as an endpoint instead of cytopathic effect was developed to overcome these limitations. In the multiplex polymerase chain reaction-based titration assay, cell cultures were infected with serial dilutions of test samples, lysed after two-day incubation, and subjected to a quantitative multiplex one-step reverse-transcriptase polymerase chain reaction. All three serotypes of poliovirus were identified in single samples and titers calculated. The multiplex polymerase chain reaction-based titration assay was reproducible, robust and sensitive. Its lower limits of titration for three Sabin strains were 1-5 cell culture 50% infectious doses per ml. We prepared different combinations of three Sabin strains and compared titers obtained with conventional and multiplex polymerase chain reaction-based titration assays. Results of the two assays correlated well and showed similar results and sensitivity. Multiplex polymerase chain reaction-based titration assay was completed in two to 3 days instead of 10 days for the conventional assay. CONCLUSIONS: The multiplex polymerase chain reaction-based titration (MPBT) is the first quantitative assay that identifies and titrates each of several different infectious viruses simultaneously in a mixture. It is suitable to identify and titrate polioviruses rapidly during the vaccine manufacturing process as a quality control test, in large clinical trials of vaccines, and for environmental surveillance of polioviruses. The MPBT assay can be automated for high-throughput implementation and applied for other viruses including those with no cytopathic effect.


Asunto(s)
Técnicas Microbiológicas/métodos , Reacción en Cadena de la Polimerasa Multiplex/normas , Poliomielitis/virología , Vacuna Antipolio Oral/aislamiento & purificación , Línea Celular Tumoral , Heces/virología , Ensayos Analíticos de Alto Rendimiento , Humanos , Técnicas Microbiológicas/normas , Poliovirus/genética , Poliovirus/aislamiento & purificación , Vacuna Antipolio Oral/genética , ARN Viral/genética , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Serogrupo , Ensayo de Placa Viral , Esparcimiento de Virus
9.
Nucleic Acids Res ; 45(19): 10989-11003, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28977510

RESUMEN

Sequence heterogeneity is a common characteristic of RNA viruses that is often referred to as sub-populations or quasispecies. Traditional techniques used for assembly of short sequence reads produced by deep sequencing, such as de-novo assemblers, ignore the underlying diversity. Here, we introduce a novel algorithm that simultaneously assembles discrete sequences of multiple genomes present in populations. Using in silico data we were able to detect populations at as low as 0.1% frequency with complete global genome reconstruction and in a single sample detected 16 resolved sequences with no mismatches. We also applied the algorithm to high throughput sequencing data obtained for viruses present in sewage samples and successfully detected multiple sub-populations and recombination events in these diverse mixtures. High sensitivity of the algorithm also enables genomic analysis of heterogeneous pathogen genomes from patient samples and accurate detection of intra-host diversity, enabling not just basic research in personalized medicine but also accurate diagnostics and monitoring drug therapies, which are critical in clinical and regulatory decision-making process.


Asunto(s)
Algoritmos , Biología Computacional/métodos , Genoma Humano/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Genoma Viral/genética , Humanos , Filogenia , Poliovirus/clasificación , Poliovirus/genética , Reproducibilidad de los Resultados
10.
J Virol ; 91(14)2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28356537

RESUMEN

Despite a great deal of prior research, the early pathogenic events in natural oral poliovirus infection remain poorly defined. To establish a model for study, we infected 39 macaques by feeding them single high doses of the virulent Mahoney strain of wild type 1 poliovirus. Doses ranging from 107 to 109 50% tissue culture infective doses (TCID50) consistently infected all the animals, and many monkeys receiving 108 or 109 TCID50 developed paralysis. There was no apparent difference in the susceptibilities of the three macaque species (rhesus, cynomolgus, and bonnet) used. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia, and virus was isolated from tonsils, gut mucosa, and draining lymph nodes. Viral replication proteins were detected in both epithelial and lymphoid cell populations expressing CD155 in the tonsil and intestine, as well as in spinal cord neurons. Necrosis was observed in these three cell types, and viral replication in the tonsil/gut was associated with histopathologic destruction and inflammation. The sustained response of neutralizing antibody correlated temporally with resolution of viremia and termination of virus shedding in oropharynges and feces. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), extending previous studies of poliovirus pathogenesis in humans. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis and to assess the efficacy of candidate antiviral drugs and new vaccines.IMPORTANCE Early pathogenic events of poliovirus infection remain largely undefined, and there is a lack of animal models mimicking natural oral human infection leading to paralytic poliomyelitis. All 39 macaques fed with single high doses ranging from 107 to 109 TCID50 Mahoney type 1 virus were infected, and many of the monkeys developed paralysis. Virus excretion in stool and nasopharynges was consistently observed, with occasional viremia; tonsil, mesentery lymph nodes, and intestinal mucosa served as major target sites of viral replication. For the first time, this model demonstrates that early in the infectious process, poliovirus replication occurs in both epithelial cells (explaining virus shedding in the gastrointestinal tract) and lymphoid/monocytic cells in tonsils and Peyer's patches (explaining viremia), thereby supplementing historical reconstructions of poliovirus pathogenesis. Because the model recapitulates human poliovirus infection and poliomyelitis, it can be used to study polio pathogenesis, candidate antiviral drugs, and the efficacy of new vaccines.


Asunto(s)
Macaca , Poliomielitis/patología , Poliovirus/crecimiento & desarrollo , Poliovirus/patogenicidad , Estructuras Animales/virología , Animales , Modelos Animales de Enfermedad , Células Epiteliales/virología , Heces/virología , Leucocitos/virología , Nasofaringe/virología , Esparcimiento de Virus
11.
Biologicals ; 55: 63-70, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29941334

RESUMEN

Bovine viral diarrhoea virus (BVDV) is a cattle pathogen that has previously been reported to be present in bovine raw materials used in the manufacture of biological products for human use. Seven lots of trivalent measles, mumps and rubella (MMR) vaccine and 1 lot of measles vaccine from the same manufacturer, together with 17 lots of foetal bovine serum (FBS) from different vendors, 4 lots of horse serum, 2 lots of bovine trypsin and 5 lots of porcine trypsin were analysed for BVDV using recently developed techniques, including PCR assays for BVDV detection, a qRT-PCR and immunofluorescence-based virus replication assays, and deep sequencing to identify and genotype BVDV genomes. All FBS lots and one lot of bovine-derived trypsin were PCR-positive for the presence of BVDV genome; in contrast all vaccine lots and the other samples were negative. qRT-PCR based virus replication assay and immunofluorescence-based infection assay detected no infectious BVDV in the PCR-positive samples. Complete BVDV genomes were generated from FBS samples by deep sequencing, and all were BVDV type 1. These data confirmed that BVDV nucleic acid may be present in bovine-derived raw materials, but no infectious virus or genomic RNA was detected in the final vaccine products.


Asunto(s)
Virus de la Diarrea Viral Bovina Tipo 1/genética , Genoma Viral , Vacuna contra el Sarampión-Parotiditis-Rubéola , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Suero/virología , Animales , Bovinos , Humanos
12.
Biologicals ; 53: 30-38, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29548791

RESUMEN

According to manufacturers, inactivated poliovirus vaccines (IPVs) are freeze sensitive and require storage between 2°C and 8°C, whereas oral poliovirus vaccine requires storage at -20 °C. Introducing IPV into ongoing immunization services might result in accidental exposure to freezing temperatures and potential loss of vaccine potency. To better understand the effect of freezing IPVs, samples of single-dose vaccine vials from Statens Serum Institut (VeroPol) and multi-dose vaccine vials from Sanofi Pasteur (IPOL) were exposed to freezing temperatures mimicking what a vaccine vial might encounter in the field. D-antigen content was measured to determine the in vitro potency by ELISA. Immunogenicity testing was conducted for a subset of exposed IPVs using the rat model. Freezing VeroPol had no detectable effect on in vitro potency (D-antigen content) in all exposures tested. Freezing of the IPOL vaccine for 7 days at -20 °C showed statistically significant decreases in D-antigen content by ELISA in poliovirus type 1 (p < 0.0001) and type 3 (p = 0.048). Reduction of poliovirus type 2 potency also approached significance (p = 0.062). The observed loss in D-antigen content did not affect immunogenicity in the rat model. Further work is required to determine the significance of the loss observed and the implications for vaccine handling policies and practices.


Asunto(s)
Criopreservación , Congelación , Inmunogenicidad Vacunal , Vacuna Antipolio de Virus Inactivados/inmunología , Animales , Femenino , Ratas , Ratas Wistar
13.
Genomics ; 109(3-4): 131-140, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28188908

RESUMEN

Advances in high-throughput sequencing (HTS) technologies have greatly increased the availability of genomic data and potential discovery of clinically significant genomic variants. However, numerous issues still exist with the analysis of these data, including data complexity, the absence of formally agreed upon best practices, and inconsistent reproducibility. Toward a more robust and reproducible variant-calling paradigm, we propose a series of selective noise filtrations and post-alignment quality control (QC) techniques that may reduce the rate of false variant calls. We have implemented both novel and refined post-alignment QC mechanisms to augment existing pre-alignment QC measures. These techniques can be used independently or in combination to identify and correct issues caused during data generation or early analysis stages. The adoption of these procedures by the broader scientific community is expected to improve the identification of clinically significant variants both in terms of computational efficiency and in the confidence of the results. AVAILABILITY: https://hive.biochemistry.gwu.edu/.


Asunto(s)
Algoritmos , Genoma Humano , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Polimorfismo Genético , Control de Calidad , Genómica/métodos , Humanos , Reproducibilidad de los Resultados , Análisis de Secuencia de ADN/métodos
14.
Plant Biotechnol J ; 14(11): 2190-2200, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27155248

RESUMEN

The WHO recommends complete withdrawal of oral polio vaccine (OPV) type 2 by April 2016 globally and replacing with at least one dose of inactivated poliovirus vaccine (IPV). However, high-cost, limited supply of IPV, persistent circulating vaccine-derived polioviruses transmission and need for subsequent boosters remain unresolved. To meet this critical need, a novel strategy of a low-cost cold chain-free plant-made viral protein 1 (VP1) subunit oral booster vaccine after single IPV dose is reported. Codon optimization of the VP1 gene enhanced expression by 50-fold in chloroplasts. Oral boosting of VP1 expressed in plant cells with plant-derived adjuvants after single priming with IPV significantly increased VP1-IgG1 and VP1-IgA titres when compared to lower IgG1 or negligible IgA titres with IPV injections. IgA plays a pivotal role in polio eradication because of its transmission through contaminated water or sewer systems. Neutralizing antibody titres (~3.17-10.17 log2 titre) and seropositivity (70-90%) against all three poliovirus Sabin serotypes were observed with two doses of IPV and plant-cell oral boosters but single dose of IPV resulted in poor neutralization. Lyophilized plant cells expressing VP1 stored at ambient temperature maintained efficacy and preserved antigen folding/assembly indefinitely, thereby eliminating cold chain currently required for all vaccines. Replacement of OPV with this booster vaccine and the next steps in clinical translation of FDA-approved antigens and adjuvants are discussed.


Asunto(s)
Cloroplastos/inmunología , Vacuna Antipolio Oral/inmunología , Enfermedades Transmisibles , Humanos , Agricultura Molecular , Vacunación
15.
Proc Natl Acad Sci U S A ; 110(50): 20242-7, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24277851

RESUMEN

Most structural information about poliovirus interaction with neutralizing antibodies was obtained in the 1980s in studies of mouse monoclonal antibodies. Recently we have isolated a number of human/chimpanzee anti-poliovirus antibodies and demonstrated that one of them, MAb A12, could neutralize polioviruses of both serotypes 1 and 2. This communication presents data on isolation of an additional cross-neutralizing antibody (F12) and identification of a previously unknown epitope on the surface of poliovirus virions. Epitope mapping was performed by sequencing of antibody-resistant mutants and by cryo-EM of complexes of virions with Fab fragments. The results have demonstrated that both cross-neutralizing antibodies bind the site located at the bottom of the canyon surrounding the fivefold axis of symmetry that was previously shown to interact with cellular poliovirus receptor CD155. However, the same antibody binds to serotypes 1 and 2 through different specific interactions. It was also shown to interact with type 3 poliovirus, albeit with about 10-fold lower affinity, insufficient for effective neutralization. Antibody interaction with the binding site of the cellular receptor may explain its broad reactivity and suggest that further screening or antibody engineering could lead to a universal antibody capable of neutralizing all three serotypes of poliovirus.


Asunto(s)
Anticuerpos Antivirales/inmunología , Cápside/metabolismo , Reacciones Cruzadas/inmunología , Modelos Moleculares , Poliovirus/inmunología , Anticuerpos Antivirales/metabolismo , Especificidad de Anticuerpos/inmunología , Secuencia de Bases , Cápside/química , Técnicas de Visualización de Superficie Celular , Microscopía por Crioelectrón , Erradicación de la Enfermedad/métodos , Ensayo de Inmunoadsorción Enzimática , Células HEK293 , Humanos , Datos de Secuencia Molecular , Pruebas de Neutralización , Análisis de Secuencia de ADN , Especificidad de la Especie
16.
Risk Anal ; 41(2): 387-388, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33590522
17.
Euro Surveill ; 21(15)2016 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-27105043

RESUMEN

An approach is proposed for environmental surveillance of poliovirus by concentrating sewage samples with tangential flow filtration (TFF) followed by deep sequencing of viral RNA. Subsequent to testing the method with samples from Finland, samples from Pakistan, a country endemic for poliovirus, were investigated. Genomic sequencing was either performed directly, for unbiased identification of viruses regardless of their ability to grow in cell cultures, or after virus enrichment by cell culture or immunoprecipitation. Bioinformatics enabled separation and determination of individual consensus sequences. Overall, deep sequencing of the entire viral population identified polioviruses, non-polio enteroviruses, and other viruses. In Pakistani sewage samples, adeno-associated virus, unable to replicate autonomously in cell cultures, was the most abundant human virus. The presence of recombinants of wild polioviruses of serotype 1 (WPV1) was also inferred, whereby currently circulating WPV1 of south-Asian (SOAS) lineage comprised two sub-lineages depending on their non-capsid region origin. Complete genome analyses additionally identified point mutants and intertypic recombinants between attenuated Sabin strains in the Pakistani samples, and in one Finnish sample. The approach could allow rapid environmental surveillance of viruses causing human infections. It creates a permanent digital repository of the entire virome potentially useful for retrospective screening of future discovered viruses.


Asunto(s)
Citometría de Flujo/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Poliovirus/genética , Poliovirus/aislamiento & purificación , Vigilancia de la Población/métodos , Aguas del Alcantarillado/virología , Monitoreo del Ambiente/métodos , Finlandia , Humanos , Metagenómica/métodos , Técnicas Microbiológicas/métodos , Pakistán , ARN Viral/genética , Ultrafiltración/métodos
19.
J Infect Dis ; 211(9): 1447-50, 2015 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-25391313

RESUMEN

Intradermal delivery of vaccines has been shown to result in dose sparing. We tested the ability of fractional doses of inactivated poliovirus vaccine (IPV) delivered intradermally to induce levels of serum poliovirus-neutralizing antibodies similar to immunization through the intramuscular route. Immunogenicity of fractional doses of IPV was studied by comparing intramuscular and intradermal immunization of Wistar rats using NanoPass MicronJet600 microneedles. Intradermal delivery of partial vaccine doses induced antibodies at titers comparable to those after immunization with full human dose delivered intramuscularly. The results suggest that intradermal delivery of IPV may lead to dose-sparing effect and reduction of the vaccination cost.


Asunto(s)
Vacuna Antipolio de Virus Inactivados/inmunología , Animales , Anticuerpos Antivirales/sangre , Relación Dosis-Respuesta Inmunológica , Femenino , Inyecciones Intradérmicas/instrumentación , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacuna Antipolio de Virus Inactivados/economía , Ratas , Ratas Wistar
20.
J Infect Dis ; 211(12): 1969-76, 2015 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-25567841

RESUMEN

BACKGROUND: Inactivated polio vaccine (IPV) is necessary for global polio eradication because oral polio vaccine can rarely cause poliomyelitis as it mutates and may fail to provide adequate immunity in immunocompromised populations. However, IPV is unaffordable for many developing countries. Intradermal IPV shows promise as a means to decrease the effective dose and cost of IPV, but prior studies, all using 20% of the standard dose used in intramuscular IPV, resulted in inferior antibody titers. METHODS: We randomly assigned 231 adults with well-controlled human immunodeficiency virus infection at a ratio of 2:2:2:1 to receive 40% of the standard dose of IPV intradermally, 20% of the standard dose intradermally, the full standard dose intramuscularly, or 40% of the standard dose intramuscularly. Intradermal vaccination was done using the NanoPass MicronJet600 microneedle device. RESULTS: Baseline immunity was 87%, 90%, and 66% against poliovirus serotypes 1, 2, and 3, respectively. After vaccination, antibody titers increased a median of 64-fold. Vaccine response to 40% of the standard dose administered intradermally was comparable to that of the standard dose of IPV administered intramuscularly and resulted in higher (although not significantly) antibody titers. Intradermal administration had higher a incidence of local side effects (redness and itching) but a similar incidence of systemic side effects and was preferred by study participants over intramuscular administration. CONCLUSIONS: A 60% reduction in the standard IPV dose without reduction in antibody titers is possible through intradermal administration.


Asunto(s)
Infecciones por VIH/inmunología , Inmunización Secundaria/métodos , Poliomielitis/inmunología , Poliomielitis/prevención & control , Vacuna Antipolio de Virus Inactivados/inmunología , Adulto , Anticuerpos Antivirales/sangre , Femenino , Humanos , Inyecciones Intradérmicas , Inyecciones Intramusculares , Masculino , Persona de Mediana Edad , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Resultado del Tratamiento , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA