Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Transl Med ; 22(1): 43, 2024 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-38200582

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) remains a leading life-threatening health challenge worldwide, with pressing needs for novel therapeutic strategies. Sphingosine kinase 1 (SphK1), a well-established pro-cancer enzyme, is aberrantly overexpressed in a multitude of malignancies, including HCC. Our previous research has shown that genetic ablation of Sphk1 mitigates HCC progression in mice. Therefore, the development of PF-543, a highly selective SphK1 inhibitor, opens a new avenue for HCC treatment. However, the anti-cancer efficacy of PF-543 has not yet been investigated in primary cancer models in vivo, thereby limiting its further translation. METHODS: Building upon the identification of the active form of SphK1 as a viable therapeutic target in human HCC specimens, we assessed the capacity of PF-543 in suppressing tumor progression using a diethylnitrosamine-induced mouse model of primary HCC. We further delineated its underlying mechanisms in both HCC and endothelial cells. Key findings were validated in Sphk1 knockout mice and lentiviral-mediated SphK1 knockdown cells. RESULTS: SphK1 activity was found to be elevated in human HCC tissues. Administration of PF-543 effectively abrogated hepatic SphK1 activity and significantly suppressed HCC progression in diethylnitrosamine-treated mice. The primary mechanism of action was through the inhibition of tumor neovascularization, as PF-543 disrupted endothelial cell angiogenesis even in a pro-angiogenic milieu. Mechanistically, PF-543 induced proteasomal degradation of the critical glycolytic enzyme 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3, thus restricting the energy supply essential for tumor angiogenesis. These effects of PF-543 could be reversed upon S1P supplementation in an S1P receptor-dependent manner. CONCLUSIONS: This study provides the first in vivo evidence supporting the potential of PF-543 as an effective anti-HCC agent. It also uncovers previously undescribed links between the pro-cancer, pro-angiogenic and pro-glycolytic roles of the SphK1/S1P/S1P receptor axis. Importantly, unlike conventional anti-HCC drugs that target individual pro-angiogenic drivers, PF-543 impairs the PFKFB3-dictated glycolytic energy engine that fuels tumor angiogenesis, representing a novel and potentially safer therapeutic strategy for HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fosfotransferasas (Aceptor de Grupo Alcohol) , Pirrolidinas , Sulfonas , Animales , Humanos , Ratones , Angiogénesis , Carcinoma Hepatocelular/genética , Dietilnitrosamina , Células Endoteliales , Neoplasias Hepáticas/genética , Metanol , Neovascularización Patológica , Fosfofructoquinasa-2 , Receptores de Esfingosina-1-Fosfato
2.
Proc Natl Acad Sci U S A ; 117(39): 24434-24442, 2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-32917816

RESUMEN

Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Hígado/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Animales , Línea Celular Tumoral , Femenino , Hepatocitos/enzimología , Hepatocitos/metabolismo , Homeostasis , Humanos , Hígado/enzimología , Masculino , Ratones , Ratones Noqueados , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Esfingolípidos/metabolismo
3.
Int J Mol Sci ; 22(24)2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34947980

RESUMEN

Sphingolipids are a class of essential lipids implicated in constructing cellular membranes and regulating nearly all cellular functions. Sphingolipid metabolic network is centered with the ceramide-sphingomyelin axis. Ceramide is well-recognized as a pro-apoptotic signal; while sphingomyelin, as the most abundant type of sphingolipids, is required for cell growth. Therefore, the balance between these two sphingolipids can be critical for cancer cell survival and functioning. Ceramide transfer protein (CERT) dictates the ratio of ceramide to sphingomyelin within the cell. It is the only lipid transfer protein that specifically delivers ceramide from the endoplasmic reticulum to the Golgi apparatus, where ceramide serves as the substrate for sphingomyelin synthesis. In the past two decades, an increasing body of evidence has suggested a critical role of CERT in cancer, but much more intensive efforts are required to draw a definite conclusion. Herein, we review all research findings of CERT, focusing on its molecular structure, cellular functions and implications in cancer. This comprehensive review of CERT will help to better understand the molecular mechanism of cancer and inspire to identify novel druggable targets.


Asunto(s)
Neoplasias/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Esfingolípidos/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Estructura Molecular , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Esfingolípidos/química
4.
Am J Clin Nutr ; 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39182617

RESUMEN

BACKGROUND: Weight loss through lifestyle interventions, notably low-energy diets, offers glycemic benefits in populations with overweight-associated prediabetes. However, >50% of these individuals fail to achieve normoglycemia after weight loss. Circulating lipids hold potential for evaluating dietary impacts and predicting diabetes risk. OBJECTIVES: This study sought to identify serum lipids that could serve as evaluative or predictive biomarkers for individual glycemic changes following diet-induced weight loss. METHODS: We studied 104 participants with overweight-associated prediabetes, who lost ≥8% weight via a low-energy diet over 8 wk. High-coverage lipidomics was conducted in serum samples before and after the dietary intervention. The lipidomic recalibration was assessed using differential lipid abundance comparisons and partial least squares discriminant analyses. Associations between lipid changes and clinical characteristics were determined by Spearman correlation and Bootstrap Forest of ensemble machine learning model. Baseline lipids, predictive of glycemic parameters changes postweight loss, were assessed using Bootstrap Forest analyses. RESULTS: We quantified 439 serum lipid species and 9 related organic acids. Dietary intervention significantly reduced diacylglycerols, ceramides, lysophospholipids, and ether-linked phosphatidylethanolamine. In contrast, acylcarnitines, short-chain fatty acids, organic acids, and ether-linked phosphatidylcholine increased significantly. Changes in certain lipid species (e.g., saturated and monounsaturated fatty acid-containing glycerolipids, sphingadienine-based very long-chain sphingolipids, and organic acids) were closely associated with clinical glycemic parameters. Six baseline bioactive sphingolipids primarily predicted changes in fasting plasma glucose. In addition, a number of baseline lipid species, mainly diacylglycerols and triglycerides, were predictive of clinical changes in hemoglobin A1c, insulin and homeostasis model assessment of insulin resistance. CONCLUSIONS: Newly discovered serum lipidomic alterations and the associated changes in lipid-clinical variables suggest broad metabolic reprogramming related to diet-mediated glycemic control. Novel lipid predictors of glycemic outcomes could facilitate early stratification of individuals with prediabetes who are metabolically less responsive to weight loss, enabling more tailored intervention strategies beyond 1-size-fits-all lifestyle modification advice. The PREVIEW lifestyle intervention study was registered at clinicaltrials.gov as NCT01777893 (https://clinicaltrials.gov/study/NCT01777893).

5.
Oncogenesis ; 11(1): 67, 2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36333295

RESUMEN

Hepatocellular carcinoma (HCC) accounts for 90% of primary liver cancer, the third leading cause of cancer-associated death worldwide. With the increasing prevalence of metabolic conditions, non-alcoholic fatty liver disease (NAFLD) is emerging as the fastest-growing HCC risk factor, and it imposes an additional layer of difficulty in HCC management. Dysregulated hepatic lipids are generally believed to constitute a deleterious environment cultivating the development of NAFLD-associated HCC. However, exactly which lipids or lipid regulators drive this process remains elusive. We report herein that sphingosine kinase 2 (SphK2), a key sphingolipid metabolic enzyme, plays a critical role in NAFLD-associated HCC. Ablation of Sphk2 suppressed HCC development in NAFLD livers via inhibition of hepatocyte proliferation both in vivo and in vitro. Mechanistically, SphK2 deficiency led to downregulation of ceramide transfer protein (CERT) that, in turn, decreased the ratio of pro-cancer sphingomyelin (SM) to anti-cancer ceramide. Overexpression of CERT restored hepatocyte proliferation, colony growth and cell cycle progression. In conclusion, the current study demonstrates that SphK2 is an essential lipid regulator in NAFLD-associated HCC, providing experimental evidence to support clinical trials of SphK2 inhibitors as systemic therapies against HCC.

6.
Front Oncol ; 11: 738078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34604081

RESUMEN

Prostate cancer is the second most prevalent malignancy worldwide. In the early stages, the development of prostate cancer is dependent on androgens. Over time with androgen deprivation therapy, 20% of prostate cancers progress to a castration-resistant form. Novel treatments for prostate cancers are still urgently needed. Erianin is a plant-derived bibenzyl compound. We report herein that erianin exhibits anti-tumor effects in androgen-sensitive and castration-resistant prostate cancer cells through different mechanisms. Erianin induces endoplasmic reticulum stress-associated apoptosis in androgen-sensitive prostate cancer cells. It also triggers pro-survival autophagic responses, as inhibition of autophagy predisposes to apoptosis. In contrast, erianin fails to induce apoptosis in castration-resistant prostate cancer cells. Instead, it results in cell cycle arrest at the M phase. Mechanistically, C16 ceramide dictates differential responses of androgen-sensitive and castration-resistant prostate cancer cells to erianin. Erianin elevates C16 ceramide level in androgen-sensitive but not castration-resistant prostate cancer cells. Overexpression of ceramide synthase 5 that specifically produces C16 ceramide enables erianin to induce apoptosis in castration-resistant prostate cancer cells. Our study provides both experimental evidence and mechanistic data showing that erianin is a potential treatment option for prostate cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA