RESUMEN
A straightforward cross-dehydrogenative coupling approach to incorporate alicyclic amino residues into the structure of model cyclic aldonitrones, 2H-imidazole oxides, is reported. The elaborated C(sp2)-H functionalization is achieved by employing cyclic amines in the presence of the I2-tert-butyl hydroperoxide (TBHP) reagent system. As a result, a series of 19 novel heterocyclic derivatives were obtained in yields of up to 97%. A mechanistic study involving electron paramagnetic resonance spectroscopic experiments allowed the radical nature of the reaction to be confirmed. In particular, the envisioned mechanistic rationale comprises N-iodination of a cyclic amine, followed by N-I bond homolysis of the resulting intermediate and subsequent amination of the nitrone moiety via the newly generated nitrogen-centered radical.
RESUMEN
Pyridines undergo a facile SNHAr phosphinylation with H-phosphinates under catalyst- and solvent-free conditions (50-55 °C) in the presence of benzoylphenylacetylene to afford 4-phosphinylpyridines in up to 68% yield. In this reaction, benzoylphenylacetylene activates the pyridine ring by the formation of a 1,3(4)-dipolar complex, deprotonates H-phosphinates to generate P-centered anions and finally acts as an oxidizer, being eliminated from an intermediate ion pair. Terminal electron-deficient acetylenes (methyl propiolate and benzoylacetylene) are inefficient as mediators in the above SNHAr process.
RESUMEN
This review summarizes and systematizes the literature on the anti-HIV activity of plant coumarins with emphasis on isolation and the mechanism of their antiviral action. This review summarizes the information on the anti-HIV properties of simple coumarins as well as annulated furano- and pyranocoumarins and shows that coumarins of plant origin can act by several mechanisms: inhibition of HIV reverse transcriptase and integrase, inhibition of cellular factors that regulate HIV-1 replication, and transmission of viral particles from infected macrophages to healthy ones. It is important to note that some pyranocoumarins are able to act through several mechanisms or bind to several sites, which ensures the resistance of these compounds to HIV mutations. Here we review the last two decades of research on the anti-HIV activity of naturally occurring coumarins.
Asunto(s)
Fármacos Anti-VIH , VIH-1 , Piranocumarinas , Cumarinas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Antivirales/farmacología , Fármacos Anti-VIH/farmacología , Transcriptasa Inversa del VIHRESUMEN
New Tb(III) and Eu(III) complexes based on aryl-2,2'-bipyridine ligands with a cyclic DO3A chelating unit appended in the alpha position of the bipyridine core were synthesized. The photophysical properties of these complexes were compared with those of complexes of ligands with identical aryl-2,2'-bipyridine chromophores, but with an acyclic DTTA residue as an additional chelating site in the alpha position of the bipyridine core. The nature of the polyaminocarboxylic acid fragments was found to have a significant influence on the luminescence. For some of the Eu(III) complexes, upon the transition from acyclic DTTA- to the cyclic DO3A-appended ligands, a noticeable increase in the intensity of Eu(III) luminescence was observed, with an increase in the quantum yield of up to 2.55 times. In contrast, for most of the Tb(III) complexes, a similar transition resulted in a noticeable decrease in the luminescence intensity of the Tb(III) cation.
RESUMEN
Selectively 15N-labeled tetrazolo[1,5-b][1,2,4]triazines and tetrazolo[1,5-a]pyrimidines bearing one, two, or three 15N labels were synthesized. The synthesized compounds were studied by 1H, 13C, and 15N NMR spectroscopy in DMSO and TFA solutions, where the azide-tetrazole equilibrium can lead to the formation of two tetrazole (T, T') isomers and one azide (A) isomer for each compound. Incorporation of the 15N-label(s) leads to the appearance of 15N-15N coupling constants (JNN), which can be easily measured via simple 1D 15N NMR spectra, even at natural abundance between labeled and unlabeled 15N atoms. The chemical shifts for the 15N nuclei in the azole moiety are very sensitive to the ring opening and azide formation, thus providing information about the azido-tetrazole equilibrium. At the same time, the 1-2JNN couplings between 15N-labeled atoms in the azole and azine fragments unambiguously determine the fusion type between tetrazole and azine rings in the cyclic isomers T and T'. Thus, combined analysis of 15N chemical shifts and JNN values in selectively isotope-enriched compounds provides an effective diagnostic tool for direct structural determination of tetrazole isomers and azide form in solution. This method was found to be the most simple and efficient way to study the azido-tetrazole equilibrium.
Asunto(s)
Azidas , Tetrazoles , Isomerismo , Espectroscopía de Resonancia Magnética , TriazinasRESUMEN
A convenient synthetic approach to asymmetrically functionalized 1,3-di(2-pyridyl)benzenes starting from 3-(3-bromophenyl)-1,2,4-triazines using sequential aza-Diels-Alder reactions and Stille cross-coupling is reported. Photophysical properties of the obtained compounds are studied.
RESUMEN
This review outlines the data of numerous studies relating to the broad-spectrum antiviral drug Triazavirin that was launched on the Russian pharmaceutical market in 2014 as an anti-influenza drug (the international non-patented name is Riamilovir). The range of antiviral activity of Triazavirin has been significantly expanded during recent years; in particular, it has been shown that Triazavirin exhibits activity against tick-borne encephalitis, Rift Valley fever, West Nile fever, and other infections of viral etiology. This drug has been approved for treatment of influenza and acute respiratory infections by the Russian Ministry of Health on the basis of comprehensive clinical trials involving over 450 patients. Triazavirin was found to be a highly effective and well-tolerated drug, allowing its over-the-counter sale. The recently published data on the use of Triazavirin in clinical practice for the treatment of patients with COVID-19 are discussed, with special attention paid to potential biological targets for this drug.
Asunto(s)
COVID-19 , Encefalitis Transmitida por Garrapatas , Gripe Humana , Animales , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Gripe Humana/tratamiento farmacológico , AzolesRESUMEN
Highly regiospecific, copper-salt-free and neat conditions have been demonstrated for the 1,3-dipolar azide-alkyne cycloaddition (AAC) reactions under mechanochemical conditions. A group of structurally challenging alkynes and heterocyclic derivatives was efficiently implemented to achieve highly functionalized 1,4-disubstituted-1,2,3-triazoles in good to excellent yield by using the Cu beads without generation of unwanted byproducts. Furthermore, the high-speed ball milling (HSBM) strategy has also been extended to the synthesis of the commercially available pharmaceutical agent, Rufinamide, an antiepileptic drug (AED) and its analogues. The same strategy was also applied for the synthesis of the Cl-derivative of Rufinamide. Analysis of the single crystal XRD data of the triazole was also performed for the final structural confirmation. The Cu beads are easily recoverable from the reaction mixture and used for the further reactions without any special treatment.
Asunto(s)
Azidas , Cobre , Cobre/química , Catálisis , Azidas/química , Triazoles/química , Alquinos/químicaRESUMEN
The risk of progression of most sporadic neurodegenerative diseases, including Alzheimer's disease, increases with age. Traditionally, this is associated with a decrease in the efficiency of cell protection systems, in particular, molecular chaperones. Thus, the development of small molecules able to induce the synthesis of chaperones is a promising therapeutic approach to prevent neural diseases associated with ageing. Here, we describe a new compound IA-50, belonging to the class of indolylazines and featured by a low size of topological polar surface area, the property related to substances with potentially high membrane-penetrating activity. We also estimated the absorption, distribution, metabolism and excretion characteristics of IA-50 and found the substance to fit the effective drug criteria. The new compound was found to induce the synthesis and accumulation of Hsp70 in normal and aged neurons and in the hippocampi of young and old mice. The transgenic model of Alzheimer's disease, based on 5xFAD mice, confirmed that the injection of IA-50 prevented the formation of ß-amyloid aggregates, loss of hippocampal neurons and the development of memory impairment. These data indicate that this novel substance may induce the expression of chaperones in neural cells and brain tissues, suggesting its possible application in the therapy of ageing-associated disorders.
Asunto(s)
Enfermedad de Alzheimer , Ratones , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuronas/metabolismo , Envejecimiento/metabolismo , Chaperonas Moleculares/metabolismo , Ratones Transgénicos , Modelos Animales de EnfermedadRESUMEN
A series of new α-(N-biphenyl)-substituted 2,2'-bipyridines were obtained through the combination of the ipso-nucleophilic aromatic substitution of the C5-cyano group, aza-Diels-Alder and Suzuki cross-coupling reactions, starting from 5-cyano-1,2,4-triazines. For the obtained compounds, photophysical and fluorosolvatochromic properties were studied. Fluorophores 3l and 3b demonstrated unexpected AIEE activity, while 3a and 3h showed promising nitroexplosive detection abilities.
Asunto(s)
2,2'-Dipiridil , Colorantes Fluorescentes , Compuestos de Bifenilo , Ionóforos , TriazinasRESUMEN
A different type of MnO2-induced oxidative cyclization of dihydrotriazines has been developed. These dihydrotriazines are considered as a "formal" Schiff's base. This method provided easy access to naphthofuro-fused triazine via the C-C/C-O oxidative coupling reaction. The reaction sequence comprised the nucleophilic addition of 2-naphthol or phenol to 1,2,4-triazine, followed by oxidative cyclization. The scope and limitations of this novel coupling reaction have been investigated. Further application of the synthesized compound has been demonstrated by synthesizing carbazole-substituted benzofuro-fused triazines. The scalability of the reaction was demonstrated at a 40 mmol load. The mechanistic study strongly suggests that this reaction proceeds through the formation of an O-coordinated manganese complex.
Asunto(s)
Bases de Schiff , Triazinas , Ciclización , Manganeso , Compuestos de Manganeso , Óxidos , Carbazoles , Fenoles , Estrés OxidativoRESUMEN
This paper reports the synthesis of four types of annulated pyranoindole congeners: pyrano[3,2-f]indole, pyrano[2,3-g]indole, pyrano[2,3-f]indole, and pyrano[2,3-e]indole and photophysical studies in this series. The synthesis of pyrano[3,2-f], [2,3-g], and [2,3-e]indoles involve a tandem of Bischler-Möhlau reaction of 3-aminophenol with benzoin to form 6-hydroxy- or 4-hydroxyindole followed by Pechmann condensation of these hydroxyindoles with ß-ketoesters. Pyrano[2,3-f]indoles were synthesized through the Nenitzescu reaction of p-benzoquinone and ethyl aminocrotonates and subsequent Pechmann condensation of the obtained 5-hydroxyindole derivatives. Among the pyranoindoles studied, the most promising were pyrano[3,2-f] and [2,3-g]indoles. These compounds were characterized by moderate to high quantum yields (30-89%) and a large (9000-15,000 cm-1) Stokes shift. More detailed photophysical studies were carried out for a series of the most promising derivatives of pyrano[3,2-f] and [2,3-g]indoles to demonstrate their positive solvatochromism, and the data collected was analyzed using Lippert-Mataga equation. Quantum chemical calculations were performed to deepen the knowledge of the absorption and emission properties of pyrano[3,2-f] and [2,3-g]indoles as well as to explain their unusual geometries and electronic structures.
Asunto(s)
Colorantes , Indoles , Fenómenos Químicos , Indoles/químicaRESUMEN
A series of novel [1,2,4]triazolo[1,5-b][1,2,4,5]tetrazines has been synthesized through oxidation reaction of the corresponding 3,6-disubstituted 1,2,4,5-tetrazines bearing amidine fragments. It is shown that the heterocyclic systems obtained can be modified easily at C(3) position in the reactions with aliphatic alcohols and amines. Also, the reactivity of [1,2,4]triazolo[1,5-b][1,2,4,5]tetrazines towards CH-active compounds has been studied. The obtained triazolo[1,5-b]annulated 1,2,4,5-tetrazines proved to be active in micromolar concentrations in vitro against filamentous anthropophilic and zooanthropophilic dermatophyte fungi (Trichophyton, Microsporum and Epidermofiton), which cause skin and its appendages (hair, nails) diseases.
RESUMEN
The methodology of nucleophilic substitution of hydrogen (SNH) was successfully applied as a convenient synthetic tool to afford azaheterocyclic derivatives of phenols of various architectures. A series of 26 novel imidazole-linked polyphenolic compounds were first prepared in 72-95% yields through the direct metal-free C-H/C-H coupling of polyphenols with 2H-imidazole 1-oxides. Comprehensive studies on the reaction condition optimization, scope, and limitations enabled the development of a straightforward method toward novel bifunctional derivatives bearing both phenolic and imidazole scaffolds of particular interest in the design of challenging molecules for versatile applications in medicinal chemistry and materials science.
Asunto(s)
Óxidos , Polifenoles , Química Farmacéutica , Imidazoles , MetalesRESUMEN
Polyfluoro(aza)aromatic compounds are of interest in various fields of practical applications, such as medicinal and agrochemistry, materials science and advanced technologies. The C-C coupling reactions are known to be a promising synthetic tool to create challenging fluorinated molecules of diverse architectures. In this review, we have summarized the recent advances in the functionalization of polyfluoro(aza)aromatics via both transition metal-catalyzed and metal-free C-C coupling reactions for the period from 2006 to the beginning of 2021. Also, mechanistic features for chemical transformations of fluoroarene scaffolds and new opportunities for practical applications of the designed fluorinated molecules have been highlighted.
RESUMEN
Direct C(sp2)-H functionalization of the endocyclic azomethine and aldonitrone moieties in non-aromatic azaheterocycles has established itself as a promising methodology over the last decade. Transition metal-catalyzed cross-coupling reactions, α-metalation-electrophile quenching protocols, and (metal-free) nucleophilic substitution of hydrogen reactions (SNH) are the major routes applied on cyclic imines and their derivatives. In this overview, we show the tangible progress made in this area during the period from 2008 to 2020.
RESUMEN
A PASE (pot, step, atom, economic) synthetic approach to 5-aryl-6-arylthio-2,2'-bipyridine and 6-arylthio-2,5-diarylpyridine ligands/fluorophores has been reported via SNH in 6-aryl-5H-1,2,4-triazines/aza-Diels-Alder reaction sequence. In this article, the "1,2,4-triazine" methodology was successfully used for the synthesis of C6-thiophenol-substituted (2,2'-bi)pyridines as it is well known that thio-substituted (bi)pyridines and their aza-analogs are of wide practical interest. The photophysical properties of the obtained compounds are studied and compared with those reported earlier for 6-substituted 2,2'-bipyridines. The influence of the nature of substituents in the 6-arylthio(bi)pyridine core on the photophysical properties is discussed. It was observed that the new compounds exhibited promising photophysical properties and could be considered as potential push-pull fluorophores. In addition, they demonstrated greater Stokes shift values compared to the previously described 6-H, 6-arylamino and 6-pentafluoro-2,2'-bipyridines and higher fluorescence quantum yields values compare to pentafluorophenyl-substituted 2,2'-bipyridines. Depending on a nature of (bi)pyridine fluorophore LE (locally excited) and/or ICT (intramolecular charge transfer) state were prevailing in emission spectra.
RESUMEN
The reaction tolerance of the multicomponent process between 3-aminoazoles, 1-morpholino-2-nitroalkenes, and aldehydes was studied. The main patterns of this reaction have been established. Conditions for the oxidation of 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines were selected. Previous claims that the 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines could not be aromatised have now been refuted. Compounds with an electron-donor substituent at position seven undergo decomposition during oxidation. The phenomenon was explained based on experimental data, electro-chemical experiment, and quantum-chemical calculation. The mechanism of oxidative degradation has been proposed.
RESUMEN
The synthesis of inhibitors for oxidative stress-associated destructive processes based on 2H-imidazole-derived phenolic compounds affording the bifunctional 2H-imidazole-derived phenolic compounds in good-to-excellent yields was reported. In particular, a series of bifunctional organic molecules of the 5-aryl-2H-imidazole family of various architectures bearing both electron-donating and electron-withdrawing substituents in the aryl fragment along with the different arrangements of the hydroxy groups in the polyphenol moiety, namely derivatives of phloroglucinol, pyrogallol, hydroxyquinol, including previously unknown water-soluble molecules, were studied. The structural and antioxidant properties of these bifunctional 5-aryl-2H-imidazoles were comprehensively studied. The redox transformations of the synthesized compounds were carried out. The integrated approach based on single and mixed mechanisms of antioxidant action, namely the AOC, ARC, Folin, and DPPH assays, were applied to estimate antioxidant activities. The relationship "structure-antioxidant properties" was established for each of the antioxidant action mechanisms. The conjugation effect was shown to result in a decrease in the mobility of the hydrogen atom, thus complicating the process of electron transfer in nearly all cases. On the contrary, the conjugation in imidazolyl substituted phloroglucinols was found to enhance their activity through the hydrogen transfer mechanism. Imidazole-derived polyphenolic compounds bearing the most electron-withdrawing functionality, namely the nitro group, were established to possess the higher values for both antioxidant and antiradical capacities. It was demonstrated that in the case of phloroglucinol derivatives, the conjugation effect resulted in a significant increase in the antiradical capacity (ARC) for a whole family of the considered 2H-imidazole-derived phenolic compounds in comparison with the corresponding unsubstituted phenols. Particularly, conjugation of the polyphenolic subunit with 2,2-dimethyl-5-(4-nitrophenyl)-2H-imidazol-4-yl fragment was shown to increase ARC from 2.26 to 5.16 (104 mol-eq/L). This means that the considered family of compounds is capable of exhibiting an antioxidant activity via transferring a hydrogen atom, exceeding the activity of known natural polyphenolic compounds.
Asunto(s)
Antioxidantes/farmacología , Diseño de Fármacos , Imidazoles/farmacología , Fenoles/farmacología , Antioxidantes/síntesis química , Antioxidantes/química , Compuestos de Bifenilo/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Imidazoles/química , Estructura Molecular , Estrés Oxidativo/efectos de los fármacos , Fenoles/síntesis química , Fenoles/química , Picratos/antagonistas & inhibidoresRESUMEN
Oxidative C-H/C-H coupling reactions of dipyrromethanes with azines in the presence of a heterophase oxidative photocatalytic system (O2/TiO2/visible light irradiation) were carried out. As a result of cyclization of obtained compounds with boron trifluoride etherate, new hetaryl-containing derivatives of 4,4-difluoro-4-boron-3a,4a-diaza-s-indacene were synthesized. For the obtained compounds, absorption and luminescence spectra, quantum yields of luminescence as well as cyclic volt-amperograms were measured.