Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 25(6): 6851-6859, 2017 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-28381027

RESUMEN

We demonstrate the controllable optomechanical coupling and Drude self-pulsation plasma locking in chip-scale optomechanical cavities. The optomechanical coupling between the optical and mechanical degrees-of-freedom is dependent on the intracavity energy via the coupled fiber position. With the deterministic optomechanical stiffening, the interaction between optomechanical oscillation and self-pulsation can be controlled. Intracavity locking with 1/6 subharmonics is obtained over a wide optical detuning range of 190.01-192.23 THz. These results bring new insights into implementations of nonlinear dynamics at mesoscopic scale, with potential applications from photonic signal processing to nonlinear dynamic networks.

2.
Laser Photon Rev ; 14(5)2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-34712367

RESUMEN

Modern navigation systems integrate the global positioning system (GPS) with an inertial navigation system (INS), which complement each other for correct attitude and velocity determination. The core of the INS integrates accelerometers and gyroscopes used to measure forces and angular rate in the vehicular inertial reference frame. With the help of gyroscopes and by integrating the acceleration to compute velocity and distance, precision and compact accelerometers with sufficient accuracy can provide small-error location determination. Solid-state implementations, through coherent readout, can provide a platform for high performance acceleration detection. In contrast to prior accelerometers using piezoelectric or capacitive readout techniques, optical readout provides narrow-linewidth high-sensitivity laser detection along with low-noise resonant optomechanical transduction near the thermodynamical limits. Here an optomechanical inertial sensor with an 8.2 µg Hz-1/2 velocity random walk (VRW) at an acquisition rate of 100 Hz and 50.9 µg bias instability is demonstrated, suitable for applications, such as, inertial navigation, inclination sensing, platform stabilization, and/or wearable device motion detection. Driven into optomechanical sustained-oscillation, the slot photonic crystal cavity provides radio-frequency readout of the optically-driven transduction with an enhanced 625 µg Hz-1 sensitivity. Measuring the optomechanically-stiffened oscillation shift, instead of the optical transmission shift, provides a 220× VRW enhancement over pre-oscillation mode detection.

3.
Sci Rep ; 7(1): 4383, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28663563

RESUMEN

For the sensitive high-resolution force- and field-sensing applications, the large-mass microelectromechanical system (MEMS) and optomechanical cavity have been proposed to realize the sub-aN/Hz1/2 resolution levels. In view of the optomechanical cavity-based force- and field-sensors, the optomechanical coupling is the key parameter for achieving high sensitivity and resolution. Here we demonstrate a chip-scale optomechanical cavity with large mass which operates at ≈77.7 kHz fundamental mode and intrinsically exhibiting large optomechanical coupling of 44 GHz/nm or more, for both optical resonance modes. The mechanical stiffening range of ≈58 kHz and a more than 100th-order harmonics are obtained, with which the free-running frequency instability is lower than 10-6 at 100 ms integration time. Such results can be applied to further improve the sensing performance of the optomechanical inspired chip-scale sensors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA