Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Environ Sci Technol ; 51(11): 6120-6130, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28513175

RESUMEN

The potential of emissions from urban vegetation combined with anthropogenic emissions to produce ozone and particulate matter has long been recognized. This potential increases with rising temperatures and may lead to severe problems with air quality in densely populated areas during heat waves. Here, we investigate how heat waves affect emissions of volatile organic compounds from urban/suburban vegetation and corresponding ground-level ozone and particulate matter. We use the Weather Research and Forecasting Model with atmospheric chemistry (WRF-Chem) with emissions of volatile organic compounds (VOCs) from vegetation simulated with MEGAN to quantify some of these feedbacks in Berlin, Germany, during the heat wave in 2006. The highest ozone concentration observed during that period was ∼200 µg/m3 (∼101 ppbV). The model simulations indicate that the contribution of biogenic VOC emissions to ozone formation is lower in June (9-11%) and August (6-9%) than in July (17-20%). On particular days within the analyzed heat wave period, this contribution increases up to 60%. The actual contribution is expected to be even higher as the model underestimates isoprene concentrations over urban forests and parks by 0.6-1.4 ppbv. Our study demonstrates that biogenic VOCs can considerably enhance air pollution during heat waves. We emphasize the dual role of vegetation for air quality and human health in cities during warm seasons, which is removal and lessening versus enhancement of air pollution. The results of our study suggest that reduction of anthropogenic sources of NOx, VOCs, and PM, for example, reduction of the motorized vehicle fleet, would have to accompany urban tree planting campaigns to make them really beneficial for urban dwellers.


Asunto(s)
Contaminación del Aire , Compuestos Orgánicos Volátiles , Contaminantes Atmosféricos , Berlin , Ciudades , Monitoreo del Ambiente , Alemania , Humanos , Ozono
2.
Environ Sci Technol ; 51(3): 1147-1156, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28060487

RESUMEN

Particulate matter (PM) deposited on Platanus acerifolia tree leaves has been sampled in the urban areas of 28 European cities, over 20 countries, with the aim of testing leaf deposited particles as indicator of atmospheric PM concentration and composition. Leaves have been collected close to streets characterized by heavy traffic and within urban parks. Leaf surface density, dimensions, and elemental composition of leaf deposited particles have been compared with leaf magnetic content, and discussed in connection with air quality data. The PM quantity and size were mainly dependent on the regional background concentration of particles, while the percentage of iron-based particles emerged as a clear marker of traffic-related pollution in most of the sites. This indicates that Platanus acerifolia is highly suitable to be used in atmospheric PM monitoring studies and that morphological and elemental characteristics of leaf deposited particles, joined with the leaf magnetic content, may successfully allow urban PM source apportionment.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Contaminación del Aire , Ciudades , Monitoreo del Ambiente , Europa (Continente) , Tamaño de la Partícula , Hojas de la Planta/química
3.
Int J Biometeorol ; 56(4): 749-63, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21805379

RESUMEN

Predicting regional and global carbon and water dynamics requires a realistic representation of vegetation phenology. Vegetation models including cropland models exist (e.g. LPJmL, Daycent, SIBcrop, ORCHIDEE-STICS, PIXGRO) but they have various limitations in predicting cropland phenological events and their responses to climate change. Here, we investigate how leaf onset and offset days of major European croplands responded to changes in climate from 1971 to 2000 using a newly developed phenological model, which solely relies on climate data. Net ecosystem exchange (NEE) data measured with eddy covariance technique at seven sites in Europe were used to adjust model parameters for wheat, barley, and rapeseed. Observational data from the International Phenology Gardens were used to corroborate modeled phenological responses to changes in climate. Enhanced vegetation index (EVI) and a crop calendar were explored as alternative predictors of leaf onset and harvest days, respectively, over a large spatial scale. In each spatial model simulation, we assumed that all European croplands were covered by only one crop type. Given this assumption, the model estimated that the leaf onset days for wheat, barley, and rapeseed in Germany advanced by 1.6, 3.4, and 3.4 days per decade, respectively, during 1961-2000. The majority of European croplands (71.4%) had an advanced mean leaf onset day for wheat, barley, and rapeseed (7.0% significant), whereas 28.6% of European croplands had a delayed leaf onset day (0.9% significant) during 1971-2000. The trend of advanced onset days estimated by the model is similar to observations from the International Phenology Gardens in Europe. The developed phenological model can be integrated into a large-scale ecosystem model to simulate the dynamics of phenological events at different temporal and spatial scales. Crop calendars and enhanced vegetation index have substantial uncertainties in predicting phenological events of croplands. Caution should be exercised when using these data.


Asunto(s)
Cambio Climático , Productos Agrícolas/crecimiento & desarrollo , Modelos Teóricos , Brassica rapa/crecimiento & desarrollo , Europa (Continente) , Hordeum/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Triticum/crecimiento & desarrollo
4.
Nat Commun ; 13(1): 4889, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-36042197

RESUMEN

Using engineered wood for construction has been discussed for climate change mitigation. It remains unclear where and in which way the additional demand for wooden construction material shall be fulfilled. Here we assess the global and regional impacts of increased demand for engineered wood on land use and associated CO2 emissions until 2100 using an open-source land system model. We show that if 90% of the new urban population would be housed in newly built urban mid-rise buildings with wooden constructions, 106 Gt of additional CO2 could be saved by 2100. Forest plantations would need to expand by up to 149 Mha by 2100 and harvests from unprotected natural forests would increase. Our results indicate that expansion of timber plantations for wooden buildings is possible without major repercussions on agricultural production. Strong governance and careful planning are required to ensure a sustainable transition to timber cities even if frontier forests and biodiversity hotspots are protected.


Asunto(s)
Carbono , Conservación de los Recursos Naturales , Dióxido de Carbono , Ciudades , Conservación de los Recursos Naturales/métodos , Bosques
5.
Ecol Appl ; 18(1): 119-31, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18372560

RESUMEN

Soils represent the largest carbon pool in the terrestrial biosphere, and climate change might affect the main carbon fluxes associated with this pool. These fluxes are the production of aboveground litter and root litter, and decomposition of the soil organic matter (SOM) pool by soil microorganisms. Knowledge about the temperature sensitivity of the decomposition of different SOM fractions is crucial in order to understand how climate change might affect carbon storage in soils. In this study, the temperature sensitivity of the turnover times of three different SOM fractions (labile, intermediate, and stabilized) was investigated for 11 forest sites along a temperature gradient. Carbon-14 isotope analyses of the SOM fractions combined with a model provided estimates of their turnover times. The turnover times of the labile SOM fraction were not correlated with mean annual soil temperature. Therefore it was not possible to estimate temperature sensitivity for the labile SOM fraction. Given considerable evidence elsewhere for significant temperature sensitivities of labile SOM, lack of temperature sensitivity here most likely indicates limitations of the applied methodology for the labile SOM fraction. The turnover times of the intermediate and the stabilized SOM fractions were both correlated with mean annual soil temperatures. The temperature sensitivity of the stabilized SOM fraction was at least equal to that of the intermediate SOM fraction and possibly more than twice as high. A correction for confounding effects of soil acidity and clay content on the temperature sensitivities of the intermediate and stabilized SOM fractions was included in the analysis. The results as observed here for the three SOM fractions may have been influenced by (1) modeling assumptions for the estimation of SOM turnover times of leaf and needle longevities, constant annual carbon inputs, and steady-state SOM pools, (2) the occurrence of summer drought at some sites, (3) differences between sites in quality of the SOM fractions, or (4) the relatively small temperature range. Our results suggested that a 1 degree C increase in temperature could lead to decreases in turnover times of 4-11% and 8-16%, for the intermediate and stabilized SOM fractions, respectively.


Asunto(s)
Compuestos Orgánicos , Suelo , Árboles , Temperatura
6.
Funct Plant Biol ; 43(4): 324-336, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32480464

RESUMEN

High concentrations of ozone (O3) can have significant impacts on the health and productivity of agricultural and forest ecosystems, leading to significant economic losses. In order to estimate this impact under a wide range of environmental conditions, the mechanisms of O3 impacts on physiological and biochemical processes have been intensively investigated. This includes the impact on stomatal conductance, the formation of reactive oxygen species and their effects on enzymes and membranes, as well as several induced and constitutive defence responses. This review summarises these processes, discusses their importance for O3 damage scenarios and assesses to which degree this knowledge is currently used in ecosystem models which are applied for impact analyses. We found that even in highly sophisticated models, feedbacks affecting regulation, detoxification capacity and vulnerability are generally not considered. This implies that O3 inflicted alterations in carbon and water balances cannot be sufficiently well described to cover immediate plant responses under changing environmental conditions. Therefore, we suggest conceptual models that link the depicted feedbacks to available process-based descriptions of stomatal conductance, photosynthesis and isoprenoid formation, particularly the linkage to isoprenoid models opens up new options for describing biosphere-atmosphere interactions.

7.
PLoS One ; 5(7): e11648, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20657833

RESUMEN

BACKGROUND: If biofuels are to be a viable substitute for fossil fuels, it is essential that they retain their potential to mitigate climate change under future atmospheric conditions. Elevated atmospheric CO2 concentration [CO2] stimulates plant biomass production; however, the beneficial effects of increased production may be offset by higher energy costs in crop management. METHODOLOGY/MAIN FINDINGS: We maintained full size poplar short rotation coppice (SRC) systems under both current ambient and future elevated [CO2] (550 ppm) and estimated their net energy and greenhouse gas balance. We show that a poplar SRC system is energy efficient and produces more energy than required for coppice management. Even more, elevated [CO2] will increase the net energy production and greenhouse gas balance of a SRC system with 18%. Managing the trees in shorter rotation cycles (i.e., 2 year cycles instead of 3 year cycles) will further enhance the benefits from elevated [CO2] on both the net energy and greenhouse gas balance. CONCLUSIONS/SIGNIFICANCE: Adapting coppice management to the future atmospheric [CO2] is necessary to fully benefit from the climate mitigation potential of bio-energy systems. Further, a future increase in potential biomass production due to elevated [CO2] outweighs the increased production costs resulting in a northward extension of the area where SRC is greenhouse gas neutral. Currently, the main part of the European terrestrial carbon sink is found in forest biomass and attributed to harvesting less than the annual growth in wood. Because SRC is intensively managed, with a higher turnover in wood production than conventional forest, northward expansion of SRC is likely to erode the European terrestrial carbon sink.


Asunto(s)
Biocombustibles , Dióxido de Carbono , Biomasa , Metabolismo Energético , Desarrollo de la Planta , Plantas/metabolismo
8.
Carbon Balance Manag ; 2: 5, 2007 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-17535432

RESUMEN

BACKGROUND: The amount of reactive nitrogen deposited on land has doubled globally and become at least five-times higher in Europe, Eastern United States, and South East Asia since 1860 mostly because of increases in fertilizer production and fossil fuel burning. Because vegetation growth in the Northern Hemisphere is typically nitrogen-limited, increased nitrogen deposition could have an attenuating effect on rising atmospheric CO2 by stimulating the vegetation productivity and accumulation of carbon in biomass. RESULTS: This study shows that elevated nitrogen deposition would not significantly enhance land carbon uptake unless we consider its effects on re-growing forests. Our results suggest that nitrogen enriched land ecosystems sequestered 0.62-2.33 PgC in the 1980s and 0.75-2.21 PgC in the 1990s depending on the proportion and age of re-growing forests. During these two decades land ecosystems are estimated to have absorbed 13-41% of carbon emitted by fossil fuel burning. CONCLUSION: Although land ecosystems and especially forests with lifted nitrogen limitations have the potential to decelerate the rise of CO2 concentrations in the atmosphere, the effect is only significant over a limited period of time. The carbon uptake associated with forest re-growth and amplified by high nitrogen deposition will decrease as soon as the forests reach maturity. Therefore, assessments relying on carbon stored on land from enhanced atmospheric nitrogen deposition to balance fossil fuel emissions may be inaccurate.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA