Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Med Genet ; 61(3): 212-223, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-37788905

RESUMEN

INTRODUCTION: Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterised by partial oculocutaneous albinism, a bleeding diathesis, immunological dysfunction and neurological impairment. Bi-allelic loss-of-function variants in LYST cause CHS. LYST encodes the lysosomal trafficking regulator, a highly conserved 429 kDa cytoplasmic protein with an unknown function. METHODS: To further our understanding of the pathogenesis of CHS, we conducted clinical evaluations on individuals with CHS enrolled in our natural history study. Using genomic DNA Sanger sequencing, we identified novel pathogenic LYST variants. Additionally, we performed an extensive literature review to curate reported LYST variants and classified these novel and reported variants according to the American College of Medical Genetics/Association for Molecular Pathology variant interpretation guidelines. RESULTS: Our investigation unveiled 11 novel pathogenic LYST variants in eight patients with a clinical diagnosis of CHS, substantiated by the presence of pathognomonic giant intracellular granules. From these novel variants, together with a comprehensive review of the literature, we compiled a total of 147 variants in LYST, including 61 frameshift variants (41%), 44 nonsense variants (30%), 23 missense variants (16%), 13 splice site variants or small genomic deletions for which the coding effect is unknown (9%), 5 in-frame variants (3%) and 1 start-loss variant (1%). Notably, a genotype-phenotype correlation emerged, whereby individuals harbouring at least one missense or in-frame variant generally resulted in milder disease, while those with two nonsense or frameshift variants generally had more severe disease. CONCLUSION: The identification of novel pathogenic LYST variants and improvements in variant classification will provide earlier diagnoses and improved care to individuals with CHS.


Asunto(s)
Síndrome de Chediak-Higashi , Humanos , Síndrome de Chediak-Higashi/genética , Síndrome de Chediak-Higashi/diagnóstico , Síndrome de Chediak-Higashi/patología , Mutación , Proteínas/genética , Mutación Missense , Secuencia de Bases , Proteínas de Transporte Vesicular/genética
2.
Genet Med ; 23(11): 2067-2075, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34257421

RESUMEN

PURPOSE: To evaluate the safety and efficacy of N-acetylmannosamine (ManNAc) in GNE myopathy, a genetic muscle disease caused by deficiency of the rate-limiting enzyme in N-acetylneuraminic acid (Neu5Ac) biosynthesis. METHODS: We conducted an open-label, phase 2, single-center (NIH, USA) study to evaluate oral ManNAc in 12 patients with GNE myopathy (ClinicalTrials.gov NCT02346461). Primary endpoints were safety and biochemical efficacy as determined by change in plasma Neu5Ac and sarcolemmal sialylation. Clinical efficacy was evaluated using secondary outcome measures as part of study extensions, and a disease progression model (GNE-DPM) was tested as an efficacy analysis method. RESULTS: Most drug-related adverse events were gastrointestinal, and there were no serious adverse events. Increased plasma Neu5Ac (+2,159 nmol/L, p < 0.0001) and sarcolemmal sialylation (p = 0.0090) were observed at day 90 compared to baseline. A slower rate of decline was observed for upper extremity strength (p = 0.0139), lower extremity strength (p = 0.0006), and the Adult Myopathy Assessment Tool (p = 0.0453), compared to natural history. Decreased disease progression was estimated at 12 (γ = 0.61 [95% CI: 0.09, 1.27]) and 18 months (γ = 0.55 [95% CI: 0.12, 1.02]) using the GNE-DPM. CONCLUSION: ManNAc showed long-term safety, biochemical efficacy consistent with the intended mechanism of action, and preliminary evidence clinical efficacy in patients with GNE myopathy.


Asunto(s)
Miopatías Distales , Enfermedades Musculares , Adulto , Hexosaminas , Humanos , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/tratamiento farmacológico , Enfermedades Musculares/genética , Ácido N-Acetilneuramínico
3.
Prenat Diagn ; 41(6): 743-753, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33440021

RESUMEN

OBJECTIVE: Heart anomalies represent nearly one-third of all congenital anomalies. They are currently diagnosed using ultrasound. However, there is a strong need for a more accurate and less operator-dependent screening method. Here we report a metabolomics characterization of maternal serum in order to describe a metabolomic fingerprint representative of heart congenital anomalies. METHODS: Metabolomic profiles were obtained from serum of 350 mothers (280 controls and 70 cases). Nine classification models were built and optimized. An ensemble model was built based on the results from the individual models. RESULTS: The ensemble machine learning model correctly classified all cases and controls. Malonic, 3-hydroxybutyric and methyl glutaric acid, urea, androstenedione, fructose, tocopherol, leucine, and putrescine were determined as the most relevant metabolites in class separation. CONCLUSION: The metabolomic signature of second trimester maternal serum from pregnancies affected by a fetal heart anomaly is quantifiably different from that of a normal pregnancy. Maternal serum metabolomics is a promising tool for the accurate and sensitive screening of such congenital defects. Moreover, the revelation of the associated metabolites and their respective biochemical pathways allows a better understanding of the overall pathophysiology of affected pregnancies.


Asunto(s)
Cardiopatías Congénitas/diagnóstico , Metabolómica/métodos , Adulto , Femenino , Cardiopatías Congénitas/sangre , Cardiopatías Congénitas/epidemiología , Humanos , Italia/epidemiología , Metabolómica/normas , Metabolómica/estadística & datos numéricos , Pruebas Prenatales no Invasivas/métodos , Pruebas Prenatales no Invasivas/estadística & datos numéricos , Embarazo , Estudios Prospectivos
4.
Biomed Chromatogr ; 34(2): e4735, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31691999

RESUMEN

The biosynthesis of sialic acid (Neu5Ac) leads to the intracellular production of cytidine-5'-monophospho-N-acetylneuraminic acid (CMP-Neu5Ac), the active sialic acid donor to nascent glycans (glycoproteins and glycolipids) in the Golgi. UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase myopathy is a rare autosomal recessive muscular disease characterized by progressive muscle weakness and atrophy. To quantify the intracellular levels of CMP-Neu5Ac as well as N-acetylmannosamine (ManNAc) and Neu5Ac in human leukocytes, we developed and validated robust liquid chromatography-tandem mass spectrometry methods. A fit-for-purpose approach was implemented for method validation. Hydrophilic interaction chromatography was used to retain three hydrophilic analytes. The human leukocyte pellets were lysed and extracted in a methanol-water mixture and the leukocyte extract was used for LC-MS/MS analysis. The lower limits of quantitation for ManNAc, Neu5Ac and CMP-Neu5Ac were 25.0, 25.0 and 10.0 ng/ml, respectively. These validated methods were applied to a clinical study.


Asunto(s)
Cromatografía Liquida/métodos , Citidina Monofosfato/análogos & derivados , Leucocitos/química , Ácidos Siálicos/sangre , Espectrometría de Masas en Tándem/métodos , Citidina Monofosfato/sangre , Estabilidad de Medicamentos , Humanos , Límite de Detección , Modelos Lineales , Reproducibilidad de los Resultados
5.
Metabolomics ; 14(6): 77, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-30830338

RESUMEN

BACKGROUND: Central nervous system anomalies represent a wide range of congenital birth defects, with an incidence of approximately 1% of all births. They are currently diagnosed using ultrasound evaluation. However, there is strong need for a more accurate and less operator-dependent screening method. OBJECTIVES: To perform a characterization of maternal serum in order to build a metabolomic fingerprint resulting from congenital anomalies of the central nervous system. METHODS: This is a case-control pilot study. Metabolomic profiles were obtained from serum of 168 mothers (98 controls and 70 cases), using gas chromatography coupled to mass spectrometry. Nine machine learning and classification models were built and optimized. An ensemble model was built based on results from the individual models. All samples were randomly divided into two groups. One was used as training set, the other one for diagnostic performance assessment. RESULTS: Ensemble machine learning model correctly classified all cases and controls. Propanoic, lactic, gluconic, benzoic, oxalic, 2-hydroxy-3-methylbutyric, acetic, lauric, myristic and stearic acid and myo-inositol and mannose were selected as the most relevant metabolites in class separation. CONCLUSION: The metabolomic signature of second trimester maternal serum from pregnancies affected by a fetal central nervous system anomaly is quantifiably different from that of a normal pregnancy. Maternal serum metabolomics is therefore a promising tool for the accurate and sensitive screening of such congenital defects. Moreover, the details of the most relevant metabolites and their respective biochemical pathways allow better understanding of the overall pathophysiology of affected pregnancies.


Asunto(s)
Biomarcadores/sangre , Enfermedades Fetales/diagnóstico , Feto/patología , Cromatografía de Gases y Espectrometría de Masas/métodos , Metaboloma , Tamizaje Neonatal/métodos , Malformaciones del Sistema Nervioso/diagnóstico , Adulto , Estudios de Casos y Controles , Femenino , Enfermedades Fetales/sangre , Feto/metabolismo , Humanos , Recién Nacido , Malformaciones del Sistema Nervioso/sangre , Proyectos Piloto , Embarazo , Segundo Trimestre del Embarazo , Atención Prenatal , Estudios Prospectivos
6.
Hum Genet ; 136(4): 409-420, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28213671

RESUMEN

Smith-Magenis syndrome (SMS), a neurodevelopmental disorder characterized by dysmorphic features, intellectual disability (ID), and sleep disturbances, results from a 17p11.2 microdeletion or a mutation in the RAI1 gene. We performed exome sequencing on 6 patients with SMS-like phenotypes but without chromosomal abnormalities or RAI1 variants. We identified pathogenic de novo variants in two cases, a nonsense variant in IQSEC2 and a missense variant in the SAND domain of DEAF1, and candidate de novo missense variants in an additional two cases. One candidate variant was located in an alpha helix of Necdin (NDN), phased to the paternally inherited allele. NDN is maternally imprinted within the 15q11.2 Prader-Willi Syndrome (PWS) region. This can help clarify NDN's role in the PWS phenotype. No definitive pathogenic gene variants were detected in the remaining SMS-like cases, but we report our findings for future comparison. This study provides information about the inheritance pattern and recurrence risk for patients with identified variants and demonstrates clinical and genetic overlap of neurodevelopmental disorders. Identification and characterization of ID-related genes that assist in development of common developmental pathways and/or gene-networks, may inform disease mechanism and treatment strategies.


Asunto(s)
Exoma , Síndrome de Smith-Magenis/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Animales , Preescolar , Estudios de Cohortes , Proteínas de Unión al ADN , Femenino , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Masculino , Proteínas Nucleares/genética , Homología de Secuencia de Aminoácido , Transactivadores , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética
7.
Mol Genet Metab ; 122(1-2): 126-134, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28641925

RESUMEN

GNE myopathy is a rare, autosomal recessive, inborn error of sialic acid metabolism, caused by mutations in GNE, the gene encoding UDP-N-acetyl-glucosamine-2-epimerase/N-acetylmannosamine kinase. The disease manifests as an adult-onset myopathy characterized by progressive skeletal muscle weakness and atrophy. There is no medical therapy available for this debilitating disease. Hyposialylation of muscle glycoproteins likely contributes to the pathophysiology of this disease. N-acetyl-D-mannosamine (ManNAc), an uncharged monosaccharide and the first committed precursor in the sialic acid biosynthetic pathway, is a therapeutic candidate that prevents muscle weakness in the mouse model of GNE myopathy. We conducted a first-in-human, randomized, placebo-controlled, double-blind, single-ascending dose study to evaluate safety and pharmacokinetics of ManNAc in GNE myopathy subjects. Single doses of 3 and 6g of oral ManNAc were safe and well tolerated; 10g was associated with diarrhea likely due to unabsorbed ManNAc. Oral ManNAc was absorbed rapidly and exhibited a short half-life (~2.4h). Following administration of a single dose of ManNAc, there was a significant and sustained increase in plasma unconjugated free sialic acid (Neu5Ac) (Tmax of 8-11h). Neu5Ac levels remained above baseline 48h post-dose in subjects who received a dose of 6 or 10g. Given that Neu5Ac is known to have a short half-life, the prolonged elevation of Neu5Ac after a single dose of ManNAc suggests that intracellular biosynthesis of sialic acid was restored in subjects with GNE myopathy, including those homozygous for mutations in the kinase domain. Simulated plasma concentration-time profiles support a dosing regimen of 6g twice daily for future clinical trials.


Asunto(s)
Miopatías Distales/tratamiento farmacológico , Hexosaminas/efectos adversos , Hexosaminas/farmacocinética , Ácido N-Acetilneuramínico/sangre , Administración Oral , Adulto , Anciano , Alelos , Animales , Miopatías Distales/genética , Miopatías Distales/fisiopatología , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Hexosaminas/administración & dosificación , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Músculos/efectos de los fármacos , Músculos/metabolismo , Mutación , Ácido N-Acetilneuramínico/biosíntesis , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética
8.
Am J Med Genet A ; 170(9): 2383-8, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27311559

RESUMEN

We report a 25-year-old female confirmed to have Smith-Magenis syndrome (SMS) due to a de novo RAI1 variant. Her past history is significant for developmental and intellectual delay, early and escalating maladaptive behaviors, and features consistent with significant sleep disturbance, the etiology of which was not confirmed for over two decades. The diagnosis of SMS was initially suspected in 1998 (at age 12 years), but that was 5 years before the initial report of RAI1 variants as causative of the SMS phenotype; cytogenetic fluorescence in situ hybridization studies failed to confirm an interstitial deletion of 17p11.2. Re-evaluation for suspected SMS was pursued with RAI1 sequencing analysis in response to urgent parental concerns of escalating behaviors and aggression with subsequent incarceration of the subject for assault of a health professional. Genetic analysis revealed a de novo RAI1 (NM_030665.3) nonsense variant, c.5536C>T; p.Q1846X. This case illustrates the importance of confirming the SMS diagnosis, which is associated with cognitive and functional impairment, as well as significant psychiatric co-morbidities and behavioral problems. The diagnosis was particularly relevant to the legal discussion and determination of her competence to stand trial. As other similar cases may exist, this report will help to increase awareness of the possibility of a very late diagnosis of SMS, with the need for re-evaluation of individuals suspected to have SMS who were initially evaluated prior to the identification of the RAI1 gene. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Codón sin Sentido , Estudios de Asociación Genética , Fenotipo , Síndrome de Smith-Magenis/diagnóstico , Síndrome de Smith-Magenis/genética , Factores de Transcripción/genética , Adulto , Deleción Cromosómica , Cromosomas Humanos Par 17 , Variaciones en el Número de Copia de ADN , Análisis Mutacional de ADN , Diagnóstico Tardío , Facies , Femenino , Humanos , Linaje , Polimorfismo de Nucleótido Simple , Transactivadores
10.
Hum Mutat ; 35(8): 915-26, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24796702

RESUMEN

The GNE gene encodes the rate-limiting, bifunctional enzyme of sialic acid biosynthesis, uridine diphosphate-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase (GNE). Biallelic GNE mutations underlie GNE myopathy, an adult-onset progressive myopathy. GNE myopathy-associated GNE mutations are predominantly missense, resulting in reduced, but not absent, GNE enzyme activities. The exact pathomechanism of GNE myopathy remains unknown, but likely involves aberrant (muscle) sialylation. Here, we summarize 154 reported and novel GNE variants associated with GNE myopathy, including 122 missense, 11 nonsense, 14 insertion/deletions, and seven intronic variants. All variants were deposited in the online GNE variation database (http://www.dmd.nl/nmdb2/home.php?select_db=GNE). We report the predicted effects on protein function of all variants well as the predicted effects on epimerase and/or kinase enzymatic activities of selected variants. By analyzing exome sequence databases, we identified three frequently occurring, unreported GNE missense variants/polymorphisms, important for future sequence interpretations. Based on allele frequencies, we estimate the world-wide prevalence of GNE myopathy to be ∼4-21/1,000,000. This previously unrecognized high prevalence confirms suspicions that many patients may escape diagnosis. Awareness among physicians for GNE myopathy is essential for the identification of new patients, which is required for better understanding of the disorder's pathomechanism and for the success of ongoing treatment trials.


Asunto(s)
Miopatías Distales/genética , Heterogeneidad Genética , Complejos Multienzimáticos/genética , Músculo Esquelético/metabolismo , Mutación , Alelos , Pueblo Asiatico , Bases de Datos Genéticas , Miopatías Distales/etnología , Miopatías Distales/patología , Miopatías Distales/fisiopatología , Exoma , Exones , Expresión Génica , Frecuencia de los Genes , Humanos , Intrones , Complejos Multienzimáticos/química , Músculo Esquelético/patología , Músculo Esquelético/fisiopatología , Ácidos Siálicos/metabolismo , Población Blanca
11.
Am J Hum Genet ; 88(6): 778-787, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21665000

RESUMEN

Hermansky-Pudlak Syndrome (HPS) is an autosomal-recessive condition characterized by oculocutaneous albinism and a bleeding diathesis due to absent platelet delta granules. HPS is a genetically heterogeneous disorder of intracellular vesicle biogenesis. We first screened all our patients with HPS-like symptoms for mutations in the genes responsible for HPS-1 through HPS-6 and found no functional mutations in 38 individuals. We then examined all eight genes encoding the biogenesis of lysosome-related organelles complex-1, or BLOC-1, proteins in these individuals. This identified a homozygous nonsense mutation in PLDN in a boy with characteristic features of HPS. PLDN is mutated in the HPS mouse model pallid and encodes the protein pallidin, which interacts with the early endosomal t-SNARE syntaxin-13. We could not detect any full-length pallidin in our patient's cells despite normal mRNA expression of the mutant transcript. We could detect an alternative transcript that would skip the exon that harbored the mutation, but we demonstrate that if this transcript is translated into protein, although it correctly localizes to early endosomes, it does not interact with syntaxin-13. In our patient's melanocytes, the melanogenic protein TYRP1 showed aberrant localization, an increase in plasma-membrane trafficking, and a failure to reach melanosomes, explaining the boy's severe albinism and establishing his diagnosis as HPS-9.


Asunto(s)
Proteínas Portadoras/genética , Síndrome de Hermanski-Pudlak/genética , Lectinas/genética , Proteínas del Tejido Nervioso/genética , Codón sin Sentido , Análisis Mutacional de ADN , Pruebas Genéticas , Humanos , Lactante , Péptidos y Proteínas de Señalización Intracelular , Masculino , Melanocitos/enzimología , Glicoproteínas de Membrana/metabolismo , Oxidorreductasas/metabolismo , Proteínas Qa-SNARE/metabolismo , Proteínas SNARE/metabolismo
12.
Bone ; 186: 117136, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38806089

RESUMEN

Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) codes for a type 2 transmembrane glycoprotein which hydrolyzes extracellular phosphoanhydrides into bio-active molecules that regulate, inter alia, ectopic mineralization, bone formation, vascular endothelial proliferation, and the innate immune response. The clinical phenotypes produced by ENPP1 deficiency are disparate, ranging from life-threatening arterial calcifications to cutaneous hypopigmentation. To investigate associations between disease phenotype and enzyme activity we quantified the enzyme velocities of 29 unique ENPP1 pathogenic variants in 41 patients enrolled in an NIH study along with 33 other variants reported in literature. We correlated the relative enzyme velocities with the presenting clinical diagnoses, performing the catalytic velocity measurements simultaneously in triplicate using a high-throughput assay to reduce experimental variation. We found that ENPP1 variants associated with autosomal dominant phenotypes reduced enzyme velocities by 50 % or more, whereas variants associated with insulin resistance had non-significant effects on enzyme velocity. In Cole disease the catalytic velocities of ENPP1 variants associated with AD forms trended to lower values than those associated with autosomal recessive forms - 8-32 % vs. 33 % of WT, respectively. Additionally, ENPP1 variants leading to life-threatening vascular calcifications in GACI patients had widely variable enzyme activities, ranging from no significant differences compared to WT to the complete abolishment of enzyme velocity. Finally, disease severity in GACI did not correlate with the mean enzyme velocity of the variants present in affected compound heterozygotes but did correlate with the more severely damaging variant. In summary, correlation of ENPP1 enzyme velocity with disease phenotypes demonstrate that enzyme velocities below 50 % of WT levels are likely to occur in the context of autosomal dominant disease (due to a monoallelic variant), and that disease severity in GACI infants correlates with the more severely damaging ENPP1 variant in compound heterozygotes, not the mean velocity of the pathogenic variants present.


Asunto(s)
Fenotipo , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Pirofosfatasas/genética , Humanos , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Femenino , Variación Genética , Masculino , Mutación/genética
13.
Development ; 137(15): 2587-96, 2010 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-20627962

RESUMEN

Costeff Syndrome, which is caused by mutations in the OPTIC ATROPHY 3 (OPA3) gene, is an early-onset syndrome characterized by urinary excretion of 3-methylglutaconic acid (MGC), optic atrophy and movement disorders, including ataxia and extrapyramidal dysfunction. The OPA3 protein is enriched in the inner mitochondrial membrane and has mitochondrial targeting signals, but a requirement for mitochondrial localization has not been demonstrated. We find zebrafish opa3 mRNA to be expressed in the optic nerve and retinal layers, the counterparts of which in humans have high mitochondrial activity. Transcripts of zebrafish opa3 are also expressed in the embryonic brain, inner ear, heart, liver, intestine and swim bladder. We isolated a zebrafish opa3 null allele for which homozygous mutants display increased MGC levels, optic nerve deficits, ataxia and an extrapyramidal movement disorder. This correspondence of metabolic, ophthalmologic and movement abnormalities between humans and zebrafish demonstrates a phylogenetic conservation of OPA3 function. We also find that delivery of exogenous Opa3 can reduce increased MGC levels in opa3 mutants, and this reduction requires the mitochondrial localization signals of Opa3. By manipulating MGC precursor availability, we infer that elevated MGC in opa3 mutants derives from extra-mitochondrial HMG-CoA through a non-canonical pathway. The opa3 mutants have normal mitochondrial oxidative phosphorylation profiles, but are nonetheless sensitive to inhibitors of the electron transport chain, which supports clinical recommendations that individuals with Costeff Syndrome avoid mitochondria-damaging agents. In summary, this paper introduces a faithful Costeff Syndrome model and demonstrates a requirement for mitochondrial OPA3 to limit HMG-CoA-derived MGC and protect the electron transport chain against inhibitory compounds.


Asunto(s)
Glutaratos/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/metabolismo , Proteínas/genética , Proteínas de Pez Cebra/genética , Acilcoenzima A/metabolismo , Alelos , Errores Innatos del Metabolismo de los Aminoácidos/genética , Animales , Modelos Animales de Enfermedad , Transporte de Electrón , Proteínas de la Membrana/genética , Mitocondrias/genética , Modelos Biológicos , Modelos Genéticos , Atrofia Óptica/genética , Fosforilación , Pez Cebra , Proteínas de Pez Cebra/metabolismo
14.
Am J Pathol ; 180(4): 1431-40, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22322304

RESUMEN

Pathological glomerular hyposialylation has been implicated in certain unexplained glomerulopathies, including minimal change nephrosis, membranous glomerulonephritis, and IgA nephropathy. We studied our previously established mouse model carrying a homozygous mutation in the key enzyme of sialic acid biosynthesis, N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase. Mutant mice died before postnatal day 3 (P3) from severe glomerulopathy with podocyte effacement and segmental glomerular basement membrane splitting due to hyposialylation. Administration of the sialic acid precursor N-acetylmannosamine (ManNAc) led to improved sialylation and survival of mutant pups beyond P3. We determined the onset of the glomerulopathy in the embryonic stage. A lectin panel, distinguishing normally sialylated from hyposialylated glycans, used WGA, SNA, PNA, Jacalin, HPA, and VVA, indicating glomerular hyposialylation of predominantly O-linked glycoproteins in mutant mice. The glomerular glycoproteins nephrin and podocalyxin were hyposialylated in this unique murine model. ManNAc treatment appeared to ameliorate the hyposialylation status of mutant mice, indicated by a lectin histochemistry pattern similar to that of wild-type mice, with improved sialylation of both nephrin and podocalyxin, as well as reduced albuminuria compared with untreated mutant mice. These findings suggest application of our lectin panel for categorizing human kidney specimens based on glomerular sialylation status. Moreover, the partial restoration of glomerular architecture in ManNAc-treated mice highlights ManNAc as a potential treatment for humans affected with disorders of glomerular hyposialylation.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Renales/genética , Animales , Biomarcadores/metabolismo , Carbohidrato Epimerasas/genética , Proteínas Portadoras/genética , Suplementos Dietéticos , Evaluación Preclínica de Medicamentos/métodos , Hexosaminas/uso terapéutico , Humanos , Enfermedades Renales/tratamiento farmacológico , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Glomérulos Renales/embriología , Glomérulos Renales/metabolismo , Glomérulos Renales/ultraestructura , Proteínas de la Membrana/metabolismo , Ratones , Ratones Mutantes , Microscopía Electrónica , Mutación , Ácido N-Acetilneuramínico/fisiología , Podocitos/metabolismo , Podocitos/ultraestructura , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Sialoglicoproteínas/metabolismo
15.
Glycoconj J ; 30(6): 609-18, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23266873

RESUMEN

The bifunctional enzyme UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. Non-allosteric GNE gene mutations cause the muscular disorder GNE myopathy (also known as hereditary inclusion body myopathy), whose exact pathology remains unknown. Increased knowledge of GNE regulation, including isoform regulation, may help elucidate the pathology of GNE myopathy. While eight mRNA transcripts encoding human GNE isoforms are described, we only identified two mouse Gne mRNA transcripts, encoding mGne1 and mGne2, homologous to human hGNE1 and hGNE2. Orthologs of the other human isoforms were not identified in mice. mGne1 appeared as the ubiquitously expressed, major mouse isoform. The mGne2 encoding transcript is differentially expressed and may act as a tissue-specific regulator of sialylation. mGne2 expression appeared significantly increased the first 2 days of life, possibly reflecting the high sialic acid demand during this period. Tissues of the knock-in Gne p.M712T mouse model had similar mGne transcript expression levels among genotypes, indicating no effect of the mutation on mRNA expression. However, upon treatment of these mice with N-acetylmannosamine (ManNAc, a Gne substrate, sialic acid precursor, and proposed therapy for GNE myopathy), Gne transcript expression, in particular mGne2, increased significantly, likely resulting in increased Gne enzymatic activities. This dual effect of ManNAc supplementation (increased flux through the sialic acid pathway and increased Gne activity) needs to be considered when treating GNE myopathy patients with ManNAc. In addition, the existence and expression of GNE isoforms needs consideration when designing other therapeutic strategies for GNE myopathy.


Asunto(s)
Hexosaminas/uso terapéutico , Complejos Multienzimáticos/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Animales , Miopatías Distales/tratamiento farmacológico , Miopatías Distales/genética , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Mutación Missense , Especificidad de Órganos , Estructura Secundaria de Proteína
16.
BMC Complement Altern Med ; 13: 17, 2013 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-23331612

RESUMEN

BACKGROUND: In this study, we investigate the effects of microcurrent stimulation on the repair process of xiphoid cartilage in 45-days-old rats. METHODS: Twenty male rats were divided into a control group and a treated group. A 3-mm defect was then created with a punch in anesthetized animals. In the treated group, animals were submitted to daily applications of a biphasic square pulse microgalvanic continuous electrical current during 5 min. In each application, it was used a frequency of 0.3 Hz and intensity of 20 µA. The animals were sacrificed at 7, 21 and 35 days after injury for structural analysis. RESULTS: Basophilia increased gradually in control animals during the experimental period. In treated animals, newly formed cartilage was observed on days 21 and 35. No statistically significant differences in birefringent collagen fibers were seen between groups at any of the time points. Treated animals presented a statistically larger number of chondroblasts. Calcification points were observed in treated animals on day 35. Ultrastructural analysis revealed differences in cell and matrix characteristics between the two groups. Chondrocyte-like cells were seen in control animals only after 35 days, whereas they were present in treated animals as early as by day 21. The number of cuprolinic blue-stained proteoglycans was statistically higher in treated animals on days 21 and 35. CONCLUSION: We conclude that microcurrent stimulation accelerates the cartilage repair in non-articular site from prepuberal animals.


Asunto(s)
Condrocitos/metabolismo , Terapia por Estimulación Eléctrica , Estimulación Eléctrica , Cartílago Hialino/metabolismo , Proteoglicanos/metabolismo , Cicatrización de Heridas , Heridas y Lesiones/terapia , Animales , Basófilos/metabolismo , Calcificación Fisiológica , Cartílago Hialino/ultraestructura , Masculino , Ratas , Ratas Wistar , Heridas y Lesiones/metabolismo
17.
Front Genet ; 14: 1072784, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968585

RESUMEN

Introduction: Chediak-Higashi syndrome (CHS) is rare autosomal recessive disorder caused by bi-allelic variants in the Lysosomal Trafficking Regulator (LYST) gene. Diagnosis is established by the detection of pathogenic variants in LYST in combination with clinical evidence of disease. Conventional molecular genetic testing of LYST by genomic DNA (gDNA) Sanger sequencing detects the majority of pathogenic variants, but some remain undetected for several individuals clinically diagnosed with CHS. In this study, cDNA Sanger sequencing was pursued as a complementary method to identify variant alleles that are undetected by gDNA Sanger sequencing and to increase molecular diagnostic yield. Methods: Six unrelated individuals with CHS were clinically evaluated and included in this study. gDNA Sanger sequencing and cDNA Sanger sequencing were performed to identify pathogenic LYST variants. Results: Ten novel LYST alleles were identified, including eight nonsense or frameshift variants and two in-frame deletions. Six of these were identified by conventional gDNA Sanger sequencing; cDNA Sanger sequencing was required to identify the remaining variant alleles. Conclusion: By utilizing cDNA sequencing as a complementary technique to identify LYST variants, a complete molecular diagnosis was obtained for all six CHS patients. In this small CHS cohort, the molecular diagnostic yield was increased, and canonical splice site variants identified from gDNA Sanger sequencing were validated by cDNA sequencing. The identification of novel LYST alleles will aid in diagnosing patients and these molecular diagnoses will also lead to genetic counseling, access to services and treatments and clinical trials in the future.

18.
Mol Genet Metab ; 107(4): 748-55, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23122659

RESUMEN

GNE myopathy, previously termed hereditary inclusion body myopathy (HIBM), is an adult-onset neuromuscular disorder characterized by progressive muscle weakness. The disorder results from biallelic mutations in GNE, encoding UDP-N-acetylglucosamine 2-epimerase/N-acetylmannosamine kinase, the key enzyme of sialic acid synthesis. GNE myopathy, associated with impaired glycan sialylation, has no approved therapy. Here we test potential sialylation-increasing monosaccharides for their effectiveness in prophylaxis (at the embryonic and neonatal stages) and therapy (after the onset of symptoms) by evaluating renal and muscle hyposialylation in a knock-in mouse model (Gne p.M712T) of GNE myopathy. We demonstrate that oral mannosamine (ManN), but not sialic acid (Neu5Ac), mannose (Man), galactose (Gal), or glucosamine (GlcN), administered to pregnant female mice has a similar prophylactic effect on renal hyposialylation, pathology and neonatal survival of mutant offspring, as previously shown for N-acetylmannosamine (ManNAc) therapy. ManN may be converted to ManNAc by a direct, yet unknown, pathway, or may act through another mode of action. The other sugars (Man, Gal, GlcN) may either not cross the placental barrier (Neu5Ac) and/or may not be able to directly increase sialylation. Because GNE myopathy patients will likely require treatment in adulthood after onset of symptoms, we also administered ManNAc (1 or 2g/kg/day for 12 weeks), Neu5Ac (2 g/kg/day for 12 weeks), or ManN (2 g/kg/day for 6 weeks) in drinking water to 6 month old mutant Gne p.M712T mice. All three therapies markedly improved the muscle and renal hyposialylation, as evidenced by lectin histochemistry for overall sialylation status and immunoblotting of specific sialoproteins. These preclinical data strongly support further evaluation of oral ManNAc, Neu5Ac and ManN as therapy for GNE myopathy and conceivably for certain glomerular diseases with hyposialylation.


Asunto(s)
Riñón/metabolismo , Monosacáridos/administración & dosificación , Músculos/metabolismo , Miositis por Cuerpos de Inclusión/congénito , Administración Oral , Animales , Femenino , Humanos , Riñón/patología , Riñón/ultraestructura , Ratones , Ratones Transgénicos , Complejos Multienzimáticos/genética , Músculos/patología , Miositis por Cuerpos de Inclusión/tratamiento farmacológico , Miositis por Cuerpos de Inclusión/genética , Miositis por Cuerpos de Inclusión/metabolismo , Ácido N-Acetilneuramínico/biosíntesis
19.
Biochemistry ; 50(41): 8914-25, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21910480

RESUMEN

UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE) catalyzes the first two committed steps in sialic acid synthesis. In addition to the three previously described human GNE isoforms (hGNE1-hGNE3), our database and polymerase chain reaction analysis yielded five additional human isoforms (hGNE4-hGNE8). hGNE1 is the ubiquitously expressed major isoform, while the hGNE2-hGNE8 isoforms are differentially expressed and may act as tissue-specific regulators of sialylation. hGNE2 and hGNE7 display a 31-residue N-terminal extension compared to hGNE1. On the basis of similarities to kinases and helicases, this extension does not seem to hinder the epimerase enzymatic active site. hGNE3 and hGNE8 contain a 55-residue N-terminal deletion and a 50-residue N-terminal extension compared to hGNE1. The size and secondary structures of these fragments are similar, and modeling predicted that these modifications do not affect the overall fold compared to that of hGNE1. However, the epimerase enzymatic activity of GNE3 and GNE8 is likely absent, because the deleted fragment contains important substrate binding residues in homologous bacterial epimerases. hGNE5-hGNE8 have a 53-residue deletion, which was assigned a role in substrate (UDP-GlcNAc) binding. Deletion of this fragment likely eliminates epimerase enzymatic activity. Our findings imply that GNE is subject to evolutionary mechanisms to improve cellular functions, without increasing the number of genes. Our expression and modeling data contribute to elucidation of the complex functional and regulatory mechanisms of human GNE and may contribute to further elucidating the pathology and treatment strategies of the human GNE-opathies sialuria and hereditary inclusion body myopathy.


Asunto(s)
Ácido N-Acetilneuramínico/química , Secuencia de Aminoácidos , Carbohidrato Epimerasas/química , Catálisis , Dominio Catalítico , ADN Complementario/metabolismo , Eliminación de Gen , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Isoformas de Proteínas , Homología de Secuencia de Aminoácido , Distribución Tisular
20.
J Clin Invest ; 117(6): 1585-94, 2007 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-17549255

RESUMEN

Mutations in the key enzyme of sialic acid biosynthesis, uridine diphospho-N-acetylglucosamine 2-epimerase/N-acetylmannosamine (ManNAc) kinase (GNE/MNK), result in hereditary inclusion body myopathy (HIBM), an adult-onset, progressive neuromuscular disorder. We created knockin mice harboring the M712T Gne/Mnk mutation. Homozygous mutant (Gne(M712T/M712T)) mice did not survive beyond P3. At P2, significantly decreased Gne-epimerase activity was observed in Gne(M712T/M712T) muscle, but no myopathic features were apparent. Rather, homozygous mutant mice had glomerular hematuria, proteinuria, and podocytopathy. Renal findings included segmental splitting of the glomerular basement membrane, effacement of podocyte foot processes, and reduced sialylation of the major podocyte sialoprotein, podocalyxin. ManNAc administration yielded survival beyond P3 in 43% of the Gne(M712T/M712T) pups. Survivors exhibited improved renal histology, increased sialylation of podocalyxin, and increased Gne/Mnk protein expression and Gne-epimerase activities. These findings establish this Gne(M712T/M712T) knockin mouse as what we believe to be the first genetic model of podocyte injury and segmental glomerular basement membrane splitting due to hyposialylation. The results also support evaluation of ManNAc as a treatment not only for HIBM but also for renal disorders involving proteinuria and hematuria due to podocytopathy and/or segmental splitting of the glomerular basement membrane.


Asunto(s)
Hexosaminas/uso terapéutico , Enfermedades Renales/genética , Enfermedades Renales/metabolismo , Ácido N-Acetilneuramínico/biosíntesis , Proteinuria/genética , Proteinuria/metabolismo , Animales , Secuencia de Bases , Cartilla de ADN/genética , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedades Renales/tratamiento farmacológico , Glomérulos Renales/metabolismo , Glomérulos Renales/patología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Microscopía Electrónica , Modelos Biológicos , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Embarazo , Proteinuria/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA