Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Lancet ; 403(10426): 568-582, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38006899

RESUMEN

Gene therapy has become a clinical reality as market-approved advanced therapy medicinal products for the treatment of distinct monogenetic diseases and B-cell malignancies. This Therapeutic Review aims to explain how progress in genome editing technologies offers the possibility to expand both therapeutic options and the types of diseases that will become treatable. To frame these impressive advances in the context of modern medicine, we incorporate examples from human clinical trials into our discussion on how genome editing will complement currently available strategies in gene therapy, which still mainly rely on gene addition strategies. Furthermore, safety considerations and ethical implications, including the issue of accessibility, are addressed as these crucial parameters will define the impact that gene therapy in general and genome editing in particular will have on how we treat patients in the near future.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Terapia Genética
2.
J Biol Chem ; 299(6): 104743, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37100283

RESUMEN

Fc receptors are involved in a variety of physiologically and disease-relevant responses. Among them, FcγRIIA (CD32a) is known for its activating functions in pathogen recognition and platelet biology, and, as potential marker of T lymphocytes latently infected with HIV-1. The latter has not been without controversy due to technical challenges complicated by T-B cell conjugates and trogocytosis as well as a lack of antibodies distinguishing between the closely related isoforms of FcγRII. To generate high-affinity binders specific for FcγRIIA, libraries of designed ankyrin repeat proteins (DARPins) were screened for binding to its extracellular domains by ribosomal display. Counterselection against FcγRIIB eliminated binders cross-reacting with both isoforms. The identified DARPins bound FcγRIIA with no detectable binding for FcγRIIB. Their affinities for FcγRIIA were in the low nanomolar range and could be enhanced by cleavage of the His-tag and dimerization. Interestingly, complex formation between DARPin and FcγRIIA followed a two-state reaction model, and discrimination from FcγRIIB was based on a single amino acid residue. In flow cytometry, DARPin F11 detected FcγRIIA+ cells even when they made up less than 1% of the cell population. Image stream analysis of primary human blood cells confirmed that F11 caused dim but reliable cell surface staining of a small subpopulation of T lymphocytes. When incubated with platelets, F11 inhibited their aggregation equally efficient as antibodies unable to discriminate between both FcγRII isoforms. The selected DARPins are unique novel tools for platelet aggregation studies as well as the role of FcγRIIA for the latent HIV-1 reservoir.


Asunto(s)
Proteínas de Repetición de Anquirina Diseñadas , Agregación Plaquetaria , Receptores de IgG , Humanos , Anticuerpos/metabolismo , Plaquetas/metabolismo , Proteínas de Repetición de Anquirina Diseñadas/metabolismo , VIH-1 , Isoformas de Proteínas/metabolismo , Receptores de IgG/metabolismo , Latencia del Virus , Linfocitos T/virología
3.
Euro Surveill ; 27(17)2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35485267

RESUMEN

BackgroundUnavailability of vaccines endangers the overall goal to protect individuals and whole populations against infections.MethodsThe German notification system includes the publication of vaccine supply shortages reported by marketing authorisation holders (MAH), information on the availability of alternative vaccine products, guidance for physicians providing vaccinations and an unavailability reporting tool to monitor regional distribution issues.AimThis study provides a retrospective analysis of supply issues and measures in the context of European and global vaccine supply constraints.Resultsbetween October 2015 and December 2020, the 250 notifications concerned all types of vaccines (54 products). Most shortages were caused by increased demand associated with immigration in Germany in 2015 and 2016, new or extended vaccine recommendations, increased awareness, or changes in global immunisation programmes. Shortages of a duration up to 30 days were mitigated using existing storage capacities. Longer shortages, triggered by high demand on a national level, were mitigated using alternative products and re-allocation; in a few cases, vaccines were imported. However, for long lasting supply shortages associated with increased global demand, often occurring in combination with manufacturing issues, few compensatory mechanisms were available. Nevertheless, only few critical incidents were identified: (i) shortage of hexavalent vaccines endangering neonatal immunisation programmes in 2015;(ii) distribution issues with influenza vaccines in 2018; and (iii) unmet demand for pneumococcal and influenza vaccines during the coronavirus disease (COVID)-19 pandemic.ConclusionVaccine product shortages in Germany resemble those present in neighbouring EU states and often reflect increased global demand not matched by manufacturing capacities.


Asunto(s)
COVID-19 , Vacunas contra la Influenza , COVID-19/epidemiología , COVID-19/prevención & control , Humanos , Recién Nacido , Vacunas Neumococicas , Estudios Retrospectivos , Vacunación
4.
Med Microbiol Immunol ; 209(6): 681-691, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32918599

RESUMEN

Chimeric Antigen Receptor (CAR)-redirected T cells show great efficacy in the patient-specific therapy of hematologic malignancies. Here, we demonstrate that a DARPin with specificity for CD4 specifically redirects and triggers the activation of CAR engineered T cells resulting in the depletion of CD4+ target cells aiming for elimination of the human immunodeficiency virus (HIV) reservoir.


Asunto(s)
Repetición de Anquirina , Linfocitos T CD4-Positivos/virología , Infecciones por VIH/inmunología , VIH/aislamiento & purificación , Inmunoterapia Adoptiva , Depleción Linfocítica/métodos , Péptidos/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Linfocitos T CD4-Positivos/inmunología , Relación Dosis-Respuesta Inmunológica , Evaluación Preclínica de Medicamentos , Gammaretrovirus/genética , Vectores Genéticos/genética , Células HEK293 , Infecciones por VIH/virología , Humanos , Activación de Linfocitos , Péptidos/química , Anticuerpos de Cadena Única/inmunología , Transducción Genética
5.
JAMA ; 321(10): 983-997, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30860564

RESUMEN

IMPORTANCE: Blood transfusion is one of the most frequently used therapies worldwide and is associated with benefits, risks, and costs. OBJECTIVE: To develop a set of evidence-based recommendations for patient blood management (PBM) and for research. EVIDENCE REVIEW: The scientific committee developed 17 Population/Intervention/Comparison/Outcome (PICO) questions for red blood cell (RBC) transfusion in adult patients in 3 areas: preoperative anemia (3 questions), RBC transfusion thresholds (11 questions), and implementation of PBM programs (3 questions). These questions guided the literature search in 4 biomedical databases (MEDLINE, EMBASE, Cochrane Library, Transfusion Evidence Library), searched from inception to January 2018. Meta-analyses were conducted with the GRADE (Grading of Recommendations, Assessment, Development, and Evaluation) methodology and the Evidence-to-Decision framework by 3 panels including clinical and scientific experts, nurses, patient representatives, and methodologists, to develop clinical recommendations during a consensus conference in Frankfurt/Main, Germany, in April 2018. FINDINGS: From 17 607 literature citations associated with the 17 PICO questions, 145 studies, including 63 randomized clinical trials with 23 143 patients and 82 observational studies with more than 4 million patients, were analyzed. For preoperative anemia, 4 clinical and 3 research recommendations were developed, including the strong recommendation to detect and manage anemia sufficiently early before major elective surgery. For RBC transfusion thresholds, 4 clinical and 6 research recommendations were developed, including 2 strong clinical recommendations for critically ill but clinically stable intensive care patients with or without septic shock (recommended threshold for RBC transfusion, hemoglobin concentration <7 g/dL) as well as for patients undergoing cardiac surgery (recommended threshold for RBC transfusion, hemoglobin concentration <7.5 g/dL). For implementation of PBM programs, 2 clinical and 3 research recommendations were developed, including recommendations to implement comprehensive PBM programs and to use electronic decision support systems (both conditional recommendations) to improve appropriate RBC utilization. CONCLUSIONS AND RELEVANCE: The 2018 PBM International Consensus Conference defined the current status of the PBM evidence base for practice and research purposes and established 10 clinical recommendations and 12 research recommendations for preoperative anemia, RBC transfusion thresholds for adults, and implementation of PBM programs. The relative paucity of strong evidence to answer many of the PICO questions supports the need for additional research and an international consensus for accepted definitions and hemoglobin thresholds, as well as clinically meaningful end points for multicenter trials.


Asunto(s)
Anemia Ferropénica/diagnóstico , Anemia Ferropénica/tratamiento farmacológico , Transfusión Sanguínea , Transfusión de Eritrocitos/normas , Hemoglobinas/análisis , Cuidados Preoperatorios/normas , Anemia/diagnóstico , Pérdida de Sangre Quirúrgica/prevención & control , Transfusión Sanguínea/normas , Procedimientos Quirúrgicos Cardíacos , Cuidados Críticos , Hemorragia Gastrointestinal/terapia , Hematínicos/uso terapéutico , Fracturas de Cadera , Humanos , Hierro/uso terapéutico
6.
J Virol ; 90(22): 10193-10208, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27581978

RESUMEN

Lentiviruses have evolved the Vif protein to counteract APOBEC3 (A3) restriction factors by targeting them for proteasomal degradation. Previous studies have identified important residues in the interface of human immunodeficiency virus type 1 (HIV-1) Vif and human APOBEC3C (hA3C) or human APOBEC3F (hA3F). However, the interaction between primate A3C proteins and HIV-1 Vif or natural HIV-1 Vif variants is still poorly understood. Here, we report that HIV-1 Vif is inactive against A3Cs of rhesus macaques (rhA3C), sooty mangabey monkeys (smmA3C), and African green monkeys (agmA3C), while HIV-2, African green monkey simian immunodeficiency virus (SIVagm), and SIVmac Vif proteins efficiently mediate the depletion of all tested A3Cs. We identified that residues N/H130 and Q133 in rhA3C and smmA3C are determinants for this HIV-1 Vif-triggered counteraction. We also found that the HIV-1 Vif interaction sites in helix 4 of hA3C and hA3F differ. Vif alleles from diverse HIV-1 subtypes were tested for degradation activities related to hA3C. The subtype F-1 Vif was identified to be inactive for degradation of hA3C and hA3F. The residues that determined F-1 Vif inactivity in the degradation of A3C/A3F were located in the C-terminal region (K167 and D182). Structural analysis of F-1 Vif revealed that impairing the internal salt bridge of E171-K167 restored reduction capacities to A3C/A3F. Furthermore, we found that D101 could also form an internal interaction with K167. Replacing D101 with glycine and R167 with lysine in NL4-3 Vif impaired its counteractivity to A3F and A3C. This finding indicates that internal interactions outside the A3 binding region in HIV-1 Vif influence the capacity to induce degradation of A3C/A3F. IMPORTANCE: The APOBEC3 restriction factors can serve as potential barriers to lentiviral cross-species transmissions. Vif proteins from lentiviruses counteract APOBEC3 by proteasomal degradation. In this study, we found that monkey-derived A3C, rhA3C and smmA3C, were resistant to HIV-1 Vif. This was determined by A3C residues N/H130 and Q133. However, HIV-2, SIVagm, and SIVmac Vif proteins were found to be able to mediate the depletion of all tested primate A3C proteins. In addition, we identified a natural HIV-1 Vif (F-1 Vif) that was inactive in the degradation of hA3C/hA3F. Here, we provide for the first time a model that explains how an internal salt bridge of E171-K167-D101 influences Vif-mediated degradation of hA3C/hA3F. This finding provides a novel way to develop HIV-1 inhibitors by targeting the internal interactions of the Vif protein.


Asunto(s)
Citidina Desaminasa/metabolismo , Productos del Gen vif/metabolismo , VIH-1/metabolismo , Virus de la Inmunodeficiencia de los Simios/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Animales , Sitios de Unión , Línea Celular , Células HEK293 , Infecciones por VIH/virología , VIH-2/metabolismo , Humanos , Lentivirus/metabolismo , Macaca mulatta , Unión Proteica/fisiología
7.
Nature ; 480(7378): 530-3, 2011 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-22048310

RESUMEN

Measles virus is an aerosol-transmitted virus that affects more than 10 million children each year and accounts for approximately 120,000 deaths. Although it was long believed to replicate in the respiratory epithelium before disseminating, it was recently shown to infect initially macrophages and dendritic cells of the airways using signalling lymphocytic activation molecule family member 1 (SLAMF1; also called CD150) as a receptor. These cells then cross the respiratory epithelium and transport the infection to lymphatic organs where measles virus replicates vigorously. How and where the virus crosses back into the airways has remained unknown. On the basis of functional analyses of surface proteins preferentially expressed on virus-permissive human epithelial cell lines, here we identify nectin-4 (ref. 8; also called poliovirus-receptor-like-4 (PVRL4)) as a candidate host exit receptor. This adherens junction protein of the immunoglobulin superfamily interacts with the viral attachment protein with high affinity through its membrane-distal domain. Nectin-4 sustains measles virus entry and non-cytopathic lateral spread in well-differentiated primary human airway epithelial sheets infected basolaterally. It is downregulated in infected epithelial cells, including those of macaque tracheae. Although other viruses use receptors to enter hosts or transit through their epithelial barriers, we suggest that measles virus targets nectin-4 to emerge in the airways. Nectin-4 is a cellular marker of several types of cancer, which has implications for ongoing measles-virus-based clinical trials of oncolysis.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Virus del Sarampión/metabolismo , Sarampión/metabolismo , Receptores Virales/metabolismo , Animales , Células CHO , Moléculas de Adhesión Celular/genética , Línea Celular , Cricetinae , Perfilación de la Expresión Génica , Humanos , Receptores Virales/genética
8.
Retrovirology ; 13(1): 46, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27368163

RESUMEN

BACKGROUND: Feline immunodeficiency virus (FIV) is a global pathogen of Felidae species and a model system for Human immunodeficiency virus (HIV)-induced AIDS. In felids such as the domestic cat (Felis catus), APOBEC3 (A3) genes encode for single-domain A3Z2s, A3Z3 and double-domain A3Z2Z3 anti-viral cytidine deaminases. The feline A3Z2Z3 is expressed following read-through transcription and alternative splicing, introducing a previously untranslated exon in frame, encoding a domain insertion called linker. Only A3Z3 and A3Z2Z3 inhibit Vif-deficient FIV. Feline A3s also are restriction factors for HIV and Simian immunodeficiency viruses (SIV). Surprisingly, HIV-2/SIV Vifs can counteract feline A3Z2Z3. RESULTS: To identify residues in feline A3s that Vifs need for interaction and degradation, chimeric human-feline A3s were tested. Here we describe the molecular direct interaction of feline A3s with Vif proteins from cat FIV and present the first structural A3 model locating these interaction regions. In the Z3 domain we have identified residues involved in binding of FIV Vif, and their mutation blocked Vif-induced A3Z3 degradation. We further identified additional essential residues for FIV Vif interaction in the A3Z2 domain, allowing the generation of FIV Vif resistant A3Z2Z3. Mutated feline A3s also showed resistance to the Vif of a lion-specific FIV, indicating an evolutionary conserved Vif-A3 binding. Comparative modelling of feline A3Z2Z3 suggests that the residues interacting with FIV Vif have, unlike Vif-interacting residues in human A3s, a unique location at the domain interface of Z2 and Z3 and that the linker forms a homeobox-like domain protruding of the Z2Z3 core. HIV-2/SIV Vifs efficiently degrade feline A3Z2Z3 by possible targeting the linker stretch connecting both Z-domains. CONCLUSIONS: Here we identified in feline A3s residues important for binding of FIV Vif and a unique protein domain insertion (linker). To understand Vif evolution, a structural model of the feline A3 was developed. Our results show that HIV Vif binds human A3s differently than FIV Vif feline A3s. The linker insertion is suggested to form a homeo-box domain, which is unique to A3s of cats and related species, and not found in human and mouse A3s. Together, these findings indicate a specific and different A3 evolution in cats and human.


Asunto(s)
Citidina Desaminasa/química , Citidina Desaminasa/metabolismo , Productos del Gen vif/metabolismo , VIH-1/metabolismo , Virus de la Inmunodeficiencia Felina/metabolismo , Animales , Gatos , Línea Celular , Citidina Desaminasa/genética , Evolución Molecular , Productos del Gen vif/genética , Genes Homeobox , VIH-1/genética , Humanos , Virus de la Inmunodeficiencia Felina/genética , Modelos Moleculares , Proteínas Recombinantes de Fusión/metabolismo
9.
J Virol ; 89(22): 11654-67, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26355094

RESUMEN

UNLABELLED: In 2012, the first cases of infection with the Middle East respiratory syndrome coronavirus (MERS-CoV) were identified. Since then, more than 1,000 cases of MERS-CoV infection have been confirmed; infection is typically associated with considerable morbidity and, in approximately 30% of cases, mortality. Currently, there is no protective vaccine available. Replication-competent recombinant measles virus (MV) expressing foreign antigens constitutes a promising tool to induce protective immunity against corresponding pathogens. Therefore, we generated MVs expressing the spike glycoprotein of MERS-CoV in its full-length (MERS-S) or a truncated, soluble variant of MERS-S (MERS-solS). The genes encoding MERS-S and MERS-solS were cloned into the vaccine strain MVvac2 genome, and the respective viruses were rescued (MVvac2-CoV-S and MVvac2-CoV-solS). These recombinant MVs were amplified and characterized at passages 3 and 10. The replication of MVvac2-CoV-S in Vero cells turned out to be comparable to that of the control virus MVvac2-GFP (encoding green fluorescent protein), while titers of MVvac2-CoV-solS were impaired approximately 3-fold. The genomic stability and expression of the inserted antigens were confirmed via sequencing of viral cDNA and immunoblot analysis. In vivo, immunization of type I interferon receptor-deficient (IFNAR(-/-))-CD46Ge mice with 2 × 10(5) 50% tissue culture infective doses of MVvac2-CoV-S(H) or MVvac2-CoV-solS(H) in a prime-boost regimen induced robust levels of both MV- and MERS-CoV-neutralizing antibodies. Additionally, induction of specific T cells was demonstrated by T cell proliferation, antigen-specific T cell cytotoxicity, and gamma interferon secretion after stimulation of splenocytes with MERS-CoV-S presented by murine dendritic cells. MERS-CoV challenge experiments indicated the protective capacity of these immune responses in vaccinated mice. IMPORTANCE: Although MERS-CoV has not yet acquired extensive distribution, being mainly confined to the Arabic and Korean peninsulas, it could adapt to spread more readily among humans and thereby become pandemic. Therefore, the development of a vaccine is mandatory. The integration of antigen-coding genes into recombinant MV resulting in coexpression of MV and foreign antigens can efficiently be achieved. Thus, in combination with the excellent safety profile of the MV vaccine, recombinant MV seems to constitute an ideal vaccine platform. The present study shows that a recombinant MV expressing MERS-S is genetically stable and induces strong humoral and cellular immunity against MERS-CoV in vaccinated mice. Subsequent challenge experiments indicated protection of vaccinated animals, illustrating the potential of MV as a vaccine platform with the potential to target emerging infections, such as MERS-CoV.


Asunto(s)
Infecciones por Coronavirus/prevención & control , Vacuna Antisarampión/inmunología , Virus del Sarampión/inmunología , Coronavirus del Síndrome Respiratorio de Oriente Medio/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Línea Celular , Proliferación Celular , Chlorocebus aethiops , Clonación Molecular/métodos , Infecciones por Coronavirus/inmunología , Células Dendríticas/inmunología , Células HEK293 , Humanos , Inmunidad Celular/inmunología , Interferón gamma/metabolismo , Virus del Sarampión/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptor de Interferón alfa y beta/genética , Glicoproteína de la Espiga del Coronavirus/biosíntesis , Glicoproteína de la Espiga del Coronavirus/genética , Linfocitos T/inmunología , Vacunación , Células Vero
10.
J Virol ; 87(16): 9030-40, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23760237

RESUMEN

Cellular cytidine deaminases from the APOBEC3 family are potent restriction factors that are able to block the replication of retroviruses. Consequently, retroviruses have evolved a variety of different mechanisms to counteract inhibition by APOBEC3 proteins. Lentiviruses such as human immunodeficiency virus (HIV) express Vif, which interferes with APOBEC3 proteins by targeting these restriction factors for proteasomal degradation, hence blocking their ability to access the reverse transcriptase complex in the virions. Other retroviruses use less-well-characterized mechanisms to escape the APOBEC3-mediated cellular defense. Here we show that the prototype foamy virus Bet protein can protect foamy viruses and an unrelated simian immunodeficiency virus against human APOBEC3G (A3G). In our system, Bet binds to A3G and prevents its encapsidation without inducing its degradation. Bet failed to coimmunoprecipitate with A3G mutants unable to form homodimers and dramatically reduced the recovery of A3G proteins from soluble cytoplasmic cell fractions. The Bet-A3G interaction is probably a direct binding interaction and seems to be independent of RNA. Together, these data suggest a novel model whereby Bet uses two possibly complementary mechanisms to counteract A3G: (i) Bet prevents encapsidation of A3G by blocking A3G dimerization, and (ii) Bet sequesters A3G in immobile complexes, impairing its ability to interact with nascent virions.


Asunto(s)
Citidina Desaminasa/antagonistas & inhibidores , Interacciones Huésped-Patógeno , Multimerización de Proteína , Proteínas de los Retroviridae/metabolismo , Virus Espumoso de los Simios/inmunología , Factores de Virulencia/metabolismo , Desaminasa APOBEC-3G , Línea Celular , Citidina Desaminasa/química , Citidina Desaminasa/metabolismo , Humanos , Solubilidad
11.
Mol Ther ; 21(4): 849-59, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23380817

RESUMEN

Oncolytic virotherapy is an emerging treatment modality that uses replication-competent viruses to destroy cancers. Many naturally occurring viruses have a preferential, although nonexclusive, tropism for tumors and tumor cells. In addition, specific targeting of cancer cells can be achieved at the virus entry level. We optimized retargeting of cell entry by elongating the measles virus attachment protein with designed ankyrin repeat proteins (DARPins), while simultaneously ablating entry through the natural receptors. DARPin-targeted viruses were strongly attenuated in off-target tissue, thereby enhancing safety, but completely eliminated tumor xenografts. Taking advantage of the unique properties of DARPins of being fused without generating folding problems, we generated a virus simultaneous targeting two different tumor markers. The bispecific virus retained the original oncolytic efficacy, while providing proof of concept for a strategy to counteract issues of resistance development. Thus, DARPin-targeting opens new prospects for the development of personalized, targeted therapeutics.


Asunto(s)
Virus del Sarampión/fisiología , Viroterapia Oncolítica/métodos , Animales , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Humanos , Virus del Sarampión/genética , Ratones , Ratones SCID
12.
Nat Methods ; 7(11): 929-35, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20935652

RESUMEN

We present a flexible and highly specific targeting method for lentiviral vectors based on single-chain antibodies recognizing cell-surface antigens. We generated lentiviral vectors specific for human CD105(+) endothelial cells, human CD133(+) hematopoietic progenitors and mouse GluA-expressing neurons. Lentiviral vectors specific for CD105 or for CD20 transduced their target cells as efficiently as VSV-G pseudotyped vectors but discriminated between endothelial cells and lymphocytes in mixed cultures. CD133-targeted vectors transduced CD133(+) cultured hematopoietic progenitor cells more efficiently than VSV-G pseudotyped vectors, resulting in stable long-term transduction. Lentiviral vectors targeted to the glutamate receptor subunits GluA2 and GluA4 exhibited more than 94% specificity for neurons in cerebellar cultures and when injected into the adult mouse brain. We observed neuron-specific gene modification upon transfer of the Cre recombinase gene into the hippocampus of reporter mice. This approach allowed targeted gene transfer to many cell types of interest with an unprecedented degree of specificity.


Asunto(s)
Células Endoteliales/metabolismo , Técnicas de Transferencia de Gen , Vectores Genéticos , Células Madre Hematopoyéticas/metabolismo , Lentivirus/genética , Neuronas/metabolismo , Antígeno AC133 , Animales , Antígenos CD/genética , Antígenos CD20/genética , Células Cultivadas , Glicoproteínas/genética , Hipocampo/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Péptidos/genética , Receptores AMPA/genética
13.
J Gen Virol ; 93(Pt 11): 2425-2430, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22894923

RESUMEN

The human immunodeficiency virus type 1 accessory protein Vif is important for viral infectivity because it counteracts the antiviral protein APOBEC3G (A3G). ³²P metabolic labelling of stimulated cells revealed in vivo phosphorylation of the control protein, whereas no serine/threonine phosphorylation was detected for Vif or the A3G protein. These data were confirmed by in vitro kinase assays using active recombinant kinase. Mitogen-activated protein kinase/extracellular signal-regulated kinase 2 efficiently phosphorylated its target ELK, but failed to phosphorylate Vif. Putative serine/threonine phosphorylation point mutations in Vif (T96, S144, S165, T188) using single-round infection assays demonstrated that these mutations did not alter Vif activity, with the exception of Vif.T96E. Interestingly, T96E and not T96A was functionally impaired, indicating that this residue is critical for Vif-A3G physical interaction and activity. Our data suggest that Vif and A3G are not serine/threonine phosphorylated in human cells and phosphorylation is not linked to their functional activities.


Asunto(s)
Citidina Desaminasa/metabolismo , VIH-1/clasificación , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo , Desaminasa APOBEC-3G , Secuencia de Aminoácidos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , Citidina Desaminasa/genética , Regulación de la Expresión Génica , Células HEK293 , VIH-1/genética , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos , Fosforilación , Mutación Puntual , Serina/metabolismo , Treonina/metabolismo , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/genética
14.
J Virol ; 85(8): 3842-57, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21307203

RESUMEN

Xenotransplantation of porcine cells, tissues, and organs shows promise to surmount the shortage of human donor materials. Among the barriers to pig-to-human xenotransplantation are porcine endogenous retroviruses (PERV) since functional representatives of the two polytropic classes, PERV-A and PERV-B, are able to infect human embryonic kidney cells in vitro, suggesting that a xenozoonosis in vivo could occur. To assess the capacity of human and porcine cells to counteract PERV infections, we analyzed human and porcine APOBEC3 (A3) proteins. This multigene family of cytidine deaminases contributes to the cellular intrinsic immunity and act as potent inhibitors of retroviruses and retrotransposons. Our data show that the porcine A3 gene locus on chromosome 5 consists of the two single-domain genes A3Z2 and A3Z3. The evolutionary relationships of the A3Z3 genes reflect the evolutionary history of mammals. The two A3 genes encode at least four different mRNAs: A3Z2, A3Z3, A3Z2-Z3, and A3Z2-Z3 splice variant A (SVA). Porcine and human A3s have been tested toward their antiretroviral activity against PERV and murine leukemia virus (MuLV) using novel single-round reporter viruses. The porcine A3Z2, A3Z3 and A3Z2-Z3 were packaged into PERV particles and inhibited PERV replication in a dose-dependent manner. The antiretroviral effect correlated with editing by the porcine A3s with a trinucleotide preference for 5' TGC for A3Z2 and A3Z2-Z3 and 5' CAC for A3Z3. These results strongly imply that human and porcine A3s could inhibit PERV replication in vivo, thereby reducing the risk of infection of human cells by PERV in the context of pig-to-human xenotransplantation.


Asunto(s)
Citosina Desaminasa/metabolismo , Retrovirus Endógenos/inmunología , Infecciones por Retroviridae/veterinaria , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Animales , Línea Celular , Humanos , Infecciones por Retroviridae/inmunología , Infecciones por Retroviridae/virología , Porcinos , Replicación Viral
15.
Mol Ther ; 19(4): 686-93, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21224833

RESUMEN

We have recently developed a retargeting system for lentiviral vectors (LVs) that relies on the pseudotyping of LVs with engineered measles virus (MV) glycoproteins (hemagglutinin (H) and fusion protein (F)). Specificity is provided through display of a single-chain antibody (scFv) as targeting domain by fusion to the MV-H protein. As an alternative to scFv, designed ankyrin repeat proteins (DARPins) can be selected to become high-affinity binders to any kind of target molecule. In this study six HER2/neu-specific DARPins exhibiting different affinities and binding to different HER2/neu epitopes were applied as targeting domains. All H-DARPin fusion proteins were efficiently expressed on the cell surface. Upon coexpression with F, syncytia formation was observed in HER2/neu positive cells only and correlated directly with the HER2/neu receptor density. All H-DARPin proteins incorporated into LVs, albeit at different levels. The vectors only transduced HER2/neu-positive cells, while HER2/neu-negative cells remained untransduced. Highest titers were observed with one particular DARPin binding to the membrane distal domain of HER2/neu with medium affinity. When applied in vivo systemically, HER2/neu-targeted LVs showed exclusive gene expression in HER2/neu positive tumor tissue, while vesicular stomatitis virus-glycoprotein (VSV-G) pseudotyped vectors mainly transduced cells in spleen and liver. Thus, DARPins are a promising alternative to scFvs for retargeting of LVs.


Asunto(s)
Vectores Genéticos/genética , Lentivirus/genética , Virus del Sarampión/metabolismo , Receptor ErbB-2/metabolismo , Anticuerpos de Cadena Única/metabolismo , Proteínas Virales de Fusión/metabolismo , Línea Celular , Citometría de Flujo , Humanos , Immunoblotting , Receptor ErbB-2/genética , Anticuerpos de Cadena Única/genética , Proteínas Virales de Fusión/genética
16.
Proc Natl Acad Sci U S A ; 106(29): 12079-84, 2009 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-19581596

RESUMEN

Human APOBEC3 (A3) proteins form part of the intrinsic immunity to retroviruses. Carrying 1 or 2 copies of a cytidine deaminase motif, A3s act by deamination of retroviral genomes during reverse transcription. HIV-1 overcomes this inhibition by the Vif protein, which prevents incorporation of A3 into virions. In this study we modeled and probed the structure of APOBEC3C (A3C), a single-domain A3 with strong antilentiviral activity. The 3-dimensional protein model was used to predict the effect of mutations on antiviral activity, which was tested in a Deltavif simian immunodeficiency virus (SIV) reporter virus assay. We found that A3C activity requires protein dimerization for antiviral activity against SIV. Furthermore, by using a structure-based algorithm for automated pocket extraction, we detected a putative substrate binding pocket of A3C distal from the zinc-coordinating deaminase motif. Mutations in this region diminished antiviral activity by excluding A3C from virions. We found evidence that the small 5.8S RNA specifically binds to this locus and mediates incorporation of A3C into virus particles.


Asunto(s)
Cápside/metabolismo , Citosina Desaminasa/química , Citosina Desaminasa/metabolismo , Modelos Moleculares , ARN/metabolismo , Desaminasas APOBEC , Sitios de Unión , Línea Celular , Citidina Desaminasa , Humanos , Immunoblotting , Proteínas Mutantes/metabolismo , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Productos del Gen vif del Virus de la Inmunodeficiencia Humana/metabolismo
17.
J Biol Chem ; 285(16): 12248-54, 2010 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-20178977

RESUMEN

The accessory protein Vpx is encoded by lentiviruses of the human immunodeficiency virus type 2 (HIV-2) and the simian immunodeficiency SIVsm/SIVmac lineage. It is packaged into virions and is indispensable in early steps of monocyte infection. HIV-1, which does not encode Vpx, is not able to infect human monocytes, but Vpx enables infection with HIV-1. The underlying mechanism is not completely understood. In this work, we focus on Vpx-mediated intracellular postentry events as counteraction of host cell proteins. We found that Vpx binds to apolipoprotein B mRNA-editing catalytic polypeptide 3 family member A (APOBEC3A; A3A), a member of the family of cytidine deaminases, present in monocytes. This interaction led to a reduction of the steady-state protein level of A3A. A single-point mutation in Vpx (H82A) abrogated binding to A3A and single-round infection of monocytes by HIV-1. Taken together, our data indicate that lentiviral Vpx counteracts A3A in human monocytes.


Asunto(s)
Citidina Desaminasa/metabolismo , VIH-1/metabolismo , VIH-1/patogenicidad , Monocitos/metabolismo , Monocitos/virología , Proteínas/metabolismo , Virus de la Inmunodeficiencia de los Simios/metabolismo , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Proteínas Reguladoras y Accesorias Virales/metabolismo , Línea Celular , Infecciones por VIH/etiología , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , VIH-1/genética , Células HeLa , Humanos , Mutagénesis Sitio-Dirigida , Unión Proteica , Virus de la Inmunodeficiencia de los Simios/genética , Transfección , Proteínas Reguladoras y Accesorias Virales/genética , Replicación Viral/genética , Replicación Viral/fisiología
18.
Retrovirology ; 8: 14, 2011 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-21366921

RESUMEN

BACKGROUND: The non-pathogenic course of SIV infection in its natural host is characterized by robust viral replication in the absence of chronic immune activation and T cell proliferation. In contrast, acutely lethal enteropathic SIVsmm strain PBj induces a strong immune activation and causes a severe acute and lethal disease in pig-tailed macaques after cross-species transmission. One important pathogenicity factor of the PBj virus is the PBj-Nef protein, which contains a conserved diacidic motif and, unusually, an immunoreceptor tyrosine-based activation motif (ITAM). RESULTS: Mutation of the diacidic motif in the Nef protein of the SIVsmmPBj abolishes the acute phenotype of this virus. In vitro, wild-type and mutant PBj (PBj-Nef202/203GG) viruses replicated to similar levels in macaque PBMCs, but PBj-Nef202/203GG no longer triggers ERK mitogen-activated protein (MAP) kinase pathway including an alteration of a Nef-associated Raf-1/ERK-2 multiprotein signaling complex. Moreover, stimulation of IL-2 and down-modulation of CD4 and CD28 were impaired in the mutant virus. Pig-tailed macaques infected with PBj-Nef202/203GG did not show enteropathic complications and lethality as observed with wild-type PBj virus, despite efficient replication of both viruses in vivo. Furthermore, PBj-Nef202/203GG infected animals revealed reduced T-cell activation in periphery lymphoid organs and no detectable induction of IL-2 and IL-6. CONCLUSIONS: In sum, we report here that mutation of the diacidic motif in the PBj-Nef protein abolishes disease progression in pig-tailed macaques despite efficient replication. These data suggest that alterations in the ability of a lentivirus to promote T cell activation and proliferation can have a dramatic impact on its pathogenic potential.


Asunto(s)
Colon/patología , Productos del Gen nef/química , Activación de Linfocitos , Mutación , Virus de la Inmunodeficiencia de los Simios/patogenicidad , Linfocitos T/inmunología , Secuencias de Aminoácidos , Animales , Células Cultivadas , Colon/virología , Productos del Gen nef/genética , Productos del Gen nef/metabolismo , Humanos , Linfopenia/virología , Macaca nemestrina , Enfermedades de los Monos/inmunología , Enfermedades de los Monos/patología , Enfermedades de los Monos/virología , Fenotipo , Síndrome de Inmunodeficiencia Adquirida del Simio/inmunología , Síndrome de Inmunodeficiencia Adquirida del Simio/fisiopatología , Síndrome de Inmunodeficiencia Adquirida del Simio/virología , Virus de la Inmunodeficiencia de los Simios/genética , Virus de la Inmunodeficiencia de los Simios/inmunología , Virus de la Inmunodeficiencia de los Simios/metabolismo , Viremia/virología , Replicación Viral
19.
Vaccines (Basel) ; 9(7)2021 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-34358163

RESUMEN

Multiple preventive COVID-19 vaccines have been developed during the ongoing SARS coronavirus (CoV) 2 pandemic, utilizing a variety of technology platforms, which have different properties, advantages, and disadvantages. The acceleration in vaccine development required to combat the current pandemic is not at the expense of the necessary regulatory requirements, including robust and comprehensive data collection along with clinical product safety and efficacy evaluation. Due to the previous development of vaccine candidates against the related highly pathogenic coronaviruses SARS-CoV and MERS-CoV, the antigen that elicits immune protection is known: the surface spike protein of SARS-CoV-2 or specific domains encoded in that protein, e.g., the receptor binding domain. From a scientific point of view and in accordance with legal frameworks and regulatory practices, for the approval of a clinic trial, the Paul-Ehrlich-Institut requires preclinical testing of vaccine candidates, including general pharmacology and toxicology as well as immunogenicity. For COVID-19 vaccine candidates, based on existing platform technologies with a sufficiently broad data base, pharmacological-toxicological testing in the case of repeated administration, quantifying systemic distribution, and proof of vaccination protection in animal models can be carried out in parallel to phase 1 or 1/2 clinical trials. To reduce the theoretical risk of an increased respiratory illness through infection-enhancing antibodies or as a result of Th2 polarization and altered cytokine profiles of the immune response following vaccination, which are of specific concern for COVID-19 vaccines, appropriate investigative testing is imperative. In general, phase 1 (vaccine safety) and 2 (dose finding, vaccination schedule) clinical trials can be combined, and combined phase 2/3 trials are recommended to determine safety and efficacy. By applying these fundamental requirements not only for the approval and analysis of clinical trials but also for the regulatory evaluation during the assessment of marketing authorization applications, several efficacious and safe COVID-19 vaccines have been licensed in the EU by unprecedentedly fast and flexible procedures. Procedural and regulatory-scientific aspects of the COVID-19 licensing processes are described in this review.

20.
iScience ; 24(3): 102170, 2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33585805

RESUMEN

Cell entry of the pandemic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is mediated by its spike protein S. As a main antigenic determinant, S protein is in focus of various therapeutic strategies. Besides particle-cell fusion, S mediates fusion between infected and uninfected cells resulting in syncytia formation. Here, we present sensitive assay systems with a high dynamic range and high signal-to-noise ratios covering not only particle-cell and cell-cell fusion but also fusion from without (FFWO). In FFWO, S-containing viral particles induce syncytia independently of de novo synthesis of S. Neutralizing antibodies, as well as sera from convalescent patients, inhibited particle-cell fusion with high efficiency. Cell-cell fusion, in contrast, was only moderately inhibited despite requiring levels of S protein below the detection limit of flow cytometry and Western blot. The data indicate that syncytia formation as pathological consequence during coronavirus disease 2019 (COVID-19) can proceed at low levels of S protein and may not be effectively prevented by antibodies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA